Solutions for Chapter 6: Special Probability Densities
Full solutions for Mathematical Statistics with Applications  8th Edition
ISBN: 9780321807090
Solutions for Chapter 6: Special Probability Densities
Get Full SolutionsSince 1 problems in chapter 6: Special Probability Densities have been answered, more than 289 students have viewed full stepbystep solutions from this chapter. Chapter 6: Special Probability Densities includes 1 full stepbystep solutions. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Mathematical Statistics with Applications, edition: 8. Mathematical Statistics with Applications was written by and is associated to the ISBN: 9780321807090.

All possible (subsets) regressions
A method of variable selection in regression that examines all possible subsets of the candidate regressor variables. Eficient computer algorithms have been developed for implementing all possible regressions

Alternative hypothesis
In statistical hypothesis testing, this is a hypothesis other than the one that is being tested. The alternative hypothesis contains feasible conditions, whereas the null hypothesis speciies conditions that are under test

Arithmetic mean
The arithmetic mean of a set of numbers x1 , x2 ,…, xn is their sum divided by the number of observations, or ( / )1 1 n xi t n ? = . The arithmetic mean is usually denoted by x , and is often called the average

Bayes’ estimator
An estimator for a parameter obtained from a Bayesian method that uses a prior distribution for the parameter along with the conditional distribution of the data given the parameter to obtain the posterior distribution of the parameter. The estimator is obtained from the posterior distribution.

Bimodal distribution.
A distribution with two modes

Coeficient of determination
See R 2 .

Conditional probability density function
The probability density function of the conditional probability distribution of a continuous random variable.

Contingency table.
A tabular arrangement expressing the assignment of members of a data set according to two or more categories or classiication criteria

Control chart
A graphical display used to monitor a process. It usually consists of a horizontal center line corresponding to the incontrol value of the parameter that is being monitored and lower and upper control limits. The control limits are determined by statistical criteria and are not arbitrary, nor are they related to speciication limits. If sample points fall within the control limits, the process is said to be incontrol, or free from assignable causes. Points beyond the control limits indicate an outofcontrol process; that is, assignable causes are likely present. This signals the need to ind and remove the assignable causes.

Covariance
A measure of association between two random variables obtained as the expected value of the product of the two random variables around their means; that is, Cov(X Y, ) [( )( )] =? ? E X Y ? ? X Y .

Deming’s 14 points.
A management philosophy promoted by W. Edwards Deming that emphasizes the importance of change and quality

Designed experiment
An experiment in which the tests are planned in advance and the plans usually incorporate statistical models. See Experiment

Discrete random variable
A random variable with a inite (or countably ininite) range.

Experiment
A series of tests in which changes are made to the system under study

F distribution.
The distribution of the random variable deined as the ratio of two independent chisquare random variables, each divided by its number of degrees of freedom.

False alarm
A signal from a control chart when no assignable causes are present

Fraction defective control chart
See P chart

Fractional factorial experiment
A type of factorial experiment in which not all possible treatment combinations are run. This is usually done to reduce the size of an experiment with several factors.

Gamma random variable
A random variable that generalizes an Erlang random variable to noninteger values of the parameter r

Geometric mean.
The geometric mean of a set of n positive data values is the nth root of the product of the data values; that is, g x i n i n = ( ) = / w 1 1 .