×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 13.2: Regression with Transformed Variables

Probability and Statistics for Engineering and the Sciences | 9th Edition | ISBN: 9781305251809 | Authors: Jay L. Devore

Full solutions for Probability and Statistics for Engineering and the Sciences | 9th Edition

ISBN: 9781305251809

Probability and Statistics for Engineering and the Sciences | 9th Edition | ISBN: 9781305251809 | Authors: Jay L. Devore

Solutions for Chapter 13.2: Regression with Transformed Variables

Probability and Statistics for Engineering and the Sciences was written by and is associated to the ISBN: 9781305251809. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Probability and Statistics for Engineering and the Sciences, edition: 9. Since 11 problems in chapter 13.2: Regression with Transformed Variables have been answered, more than 81878 students have viewed full step-by-step solutions from this chapter. Chapter 13.2: Regression with Transformed Variables includes 11 full step-by-step solutions.

Key Statistics Terms and definitions covered in this textbook
  • `-error (or `-risk)

    In hypothesis testing, an error incurred by rejecting a null hypothesis when it is actually true (also called a type I error).

  • Alternative hypothesis

    In statistical hypothesis testing, this is a hypothesis other than the one that is being tested. The alternative hypothesis contains feasible conditions, whereas the null hypothesis speciies conditions that are under test

  • Assignable cause

    The portion of the variability in a set of observations that can be traced to speciic causes, such as operators, materials, or equipment. Also called a special cause.

  • Bias

    An effect that systematically distorts a statistical result or estimate, preventing it from representing the true quantity of interest.

  • Binomial random variable

    A discrete random variable that equals the number of successes in a ixed number of Bernoulli trials.

  • Cause-and-effect diagram

    A chart used to organize the various potential causes of a problem. Also called a ishbone diagram.

  • Central limit theorem

    The simplest form of the central limit theorem states that the sum of n independently distributed random variables will tend to be normally distributed as n becomes large. It is a necessary and suficient condition that none of the variances of the individual random variables are large in comparison to their sum. There are more general forms of the central theorem that allow ininite variances and correlated random variables, and there is a multivariate version of the theorem.

  • Chi-square (or chi-squared) random variable

    A continuous random variable that results from the sum of squares of independent standard normal random variables. It is a special case of a gamma random variable.

  • Coeficient of determination

    See R 2 .

  • Comparative experiment

    An experiment in which the treatments (experimental conditions) that are to be studied are included in the experiment. The data from the experiment are used to evaluate the treatments.

  • Confounding

    When a factorial experiment is run in blocks and the blocks are too small to contain a complete replicate of the experiment, one can run a fraction of the replicate in each block, but this results in losing information on some effects. These effects are linked with or confounded with the blocks. In general, when two factors are varied such that their individual effects cannot be determined separately, their effects are said to be confounded.

  • Correlation

    In the most general usage, a measure of the interdependence among data. The concept may include more than two variables. The term is most commonly used in a narrow sense to express the relationship between quantitative variables or ranks.

  • Decision interval

    A parameter in a tabular CUSUM algorithm that is determined from a trade-off between false alarms and the detection of assignable causes.

  • Defect

    Used in statistical quality control, a defect is a particular type of nonconformance to speciications or requirements. Sometimes defects are classiied into types, such as appearance defects and functional defects.

  • Defect concentration diagram

    A quality tool that graphically shows the location of defects on a part or in a process.

  • Deining relation

    A subset of effects in a fractional factorial design that deine the aliases in the design.

  • Dispersion

    The amount of variability exhibited by data

  • Extra sum of squares method

    A method used in regression analysis to conduct a hypothesis test for the additional contribution of one or more variables to a model.

  • Gamma random variable

    A random variable that generalizes an Erlang random variable to noninteger values of the parameter r

  • Gaussian distribution

    Another name for the normal distribution, based on the strong connection of Karl F. Gauss to the normal distribution; often used in physics and electrical engineering applications

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password