×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 4: First Course in Probability 8th Edition

First Course in Probability | 8th Edition | ISBN: 9780136033134 | Authors: Norman S. Nise

Full solutions for First Course in Probability | 8th Edition

ISBN: 9780136033134

First Course in Probability | 8th Edition | ISBN: 9780136033134 | Authors: Norman S. Nise

Solutions for Chapter 4

Solutions for Chapter 4
4 5 0 372 Reviews
17
3
Textbook: First Course in Probability
Edition: 8
Author: Norman S. Nise
ISBN: 9780136033134

First Course in Probability was written by and is associated to the ISBN: 9780136033134. Chapter 4 includes 85 full step-by-step solutions. Since 85 problems in chapter 4 have been answered, more than 6201 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: First Course in Probability, edition: 8.

Key Statistics Terms and definitions covered in this textbook
  • Additivity property of x 2

    If two independent random variables X1 and X2 are distributed as chi-square with v1 and v2 degrees of freedom, respectively, Y = + X X 1 2 is a chi-square random variable with u = + v v 1 2 degrees of freedom. This generalizes to any number of independent chi-square random variables.

  • Bayes’ estimator

    An estimator for a parameter obtained from a Bayesian method that uses a prior distribution for the parameter along with the conditional distribution of the data given the parameter to obtain the posterior distribution of the parameter. The estimator is obtained from the posterior distribution.

  • Bivariate distribution

    The joint probability distribution of two random variables.

  • C chart

    An attribute control chart that plots the total number of defects per unit in a subgroup. Similar to a defects-per-unit or U chart.

  • Central composite design (CCD)

    A second-order response surface design in k variables consisting of a two-level factorial, 2k axial runs, and one or more center points. The two-level factorial portion of a CCD can be a fractional factorial design when k is large. The CCD is the most widely used design for itting a second-order model.

  • Chi-square test

    Any test of signiicance based on the chi-square distribution. The most common chi-square tests are (1) testing hypotheses about the variance or standard deviation of a normal distribution and (2) testing goodness of it of a theoretical distribution to sample data

  • Conditional probability

    The probability of an event given that the random experiment produces an outcome in another event.

  • Conditional variance.

    The variance of the conditional probability distribution of a random variable.

  • Consistent estimator

    An estimator that converges in probability to the true value of the estimated parameter as the sample size increases.

  • Continuous distribution

    A probability distribution for a continuous random variable.

  • Continuous random variable.

    A random variable with an interval (either inite or ininite) of real numbers for its range.

  • Cumulative distribution function

    For a random variable X, the function of X deined as PX x ( ) ? that is used to specify the probability distribution.

  • Curvilinear regression

    An expression sometimes used for nonlinear regression models or polynomial regression models.

  • Deming’s 14 points.

    A management philosophy promoted by W. Edwards Deming that emphasizes the importance of change and quality

  • Dependent variable

    The response variable in regression or a designed experiment.

  • Designed experiment

    An experiment in which the tests are planned in advance and the plans usually incorporate statistical models. See Experiment

  • Exponential random variable

    A series of tests in which changes are made to the system under study

  • Factorial experiment

    A type of experimental design in which every level of one factor is tested in combination with every level of another factor. In general, in a factorial experiment, all possible combinations of factor levels are tested.

  • Fractional factorial experiment

    A type of factorial experiment in which not all possible treatment combinations are run. This is usually done to reduce the size of an experiment with several factors.

  • Gamma random variable

    A random variable that generalizes an Erlang random variable to noninteger values of the parameter r

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password