Solutions for Chapter 10.6: Elementary Statistics 12th Edition

Elementary Statistics | 12th Edition | ISBN: 9780321836960 | Authors: Mario F. Triola

Full solutions for Elementary Statistics | 12th Edition

ISBN: 9780321836960

Elementary Statistics | 12th Edition | ISBN: 9780321836960 | Authors: Mario F. Triola

Solutions for Chapter 10.6

Solutions for Chapter 10.6
4 5 0 348 Reviews
17
0
Textbook: Elementary Statistics
Edition: 12th
Author: Mario F. Triola
ISBN: 9780321836960

Since 73 problems in chapter 10.6 have been answered, more than 105461 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Elementary Statistics, edition: 12th. Elementary Statistics was written by and is associated to the ISBN: 9780321836960. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 10.6 includes 73 full step-by-step solutions.

Key Statistics Terms and definitions covered in this textbook
  • Alias

    In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Average

    See Arithmetic mean.

  • Bivariate normal distribution

    The joint distribution of two normal random variables

  • Categorical data

    Data consisting of counts or observations that can be classiied into categories. The categories may be descriptive.

  • Conditional mean

    The mean of the conditional probability distribution of a random variable.

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Consistent estimator

    An estimator that converges in probability to the true value of the estimated parameter as the sample size increases.

  • Contingency table.

    A tabular arrangement expressing the assignment of members of a data set according to two or more categories or classiication criteria

  • Contour plot

    A two-dimensional graphic used for a bivariate probability density function that displays curves for which the probability density function is constant.

  • Decision interval

    A parameter in a tabular CUSUM algorithm that is determined from a trade-off between false alarms and the detection of assignable causes.

  • Defect concentration diagram

    A quality tool that graphically shows the location of defects on a part or in a process.

  • Empirical model

    A model to relate a response to one or more regressors or factors that is developed from data obtained from the system.

  • Error mean square

    The error sum of squares divided by its number of degrees of freedom.

  • Error propagation

    An analysis of how the variance of the random variable that represents that output of a system depends on the variances of the inputs. A formula exists when the output is a linear function of the inputs and the formula is simpliied if the inputs are assumed to be independent.

  • Experiment

    A series of tests in which changes are made to the system under study

  • Fixed factor (or fixed effect).

    In analysis of variance, a factor or effect is considered ixed if all the levels of interest for that factor are included in the experiment. Conclusions are then valid about this set of levels only, although when the factor is quantitative, it is customary to it a model to the data for interpolating between these levels.

  • Fractional factorial experiment

    A type of factorial experiment in which not all possible treatment combinations are run. This is usually done to reduce the size of an experiment with several factors.

  • Frequency distribution

    An arrangement of the frequencies of observations in a sample or population according to the values that the observations take on

  • Geometric mean.

    The geometric mean of a set of n positive data values is the nth root of the product of the data values; that is, g x i n i n = ( ) = / w 1 1 .

  • Geometric random variable

    A discrete random variable that is the number of Bernoulli trials until a success occurs.

×
Log in to StudySoup
Get Full Access to Thousands of Study Materials at Your School

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Thousands of Study Materials at Your School
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here