×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter SE5: Sample Exams

Probability and Statistics for Engineering and the Sciences (with Student Suite Online) | 7th Edition | ISBN: 9780495382171 | Authors: Jay L. Devore

Full solutions for Probability and Statistics for Engineering and the Sciences (with Student Suite Online) | 7th Edition

ISBN: 9780495382171

Probability and Statistics for Engineering and the Sciences (with Student Suite Online) | 7th Edition | ISBN: 9780495382171 | Authors: Jay L. Devore

Solutions for Chapter SE5: Sample Exams

This textbook survival guide was created for the textbook: Probability and Statistics for Engineering and the Sciences (with Student Suite Online), edition: 7. Since 12 problems in chapter SE5: Sample Exams have been answered, more than 99536 students have viewed full step-by-step solutions from this chapter. Chapter SE5: Sample Exams includes 12 full step-by-step solutions. Probability and Statistics for Engineering and the Sciences (with Student Suite Online) was written by and is associated to the ISBN: 9780495382171. This expansive textbook survival guide covers the following chapters and their solutions.

Key Statistics Terms and definitions covered in this textbook
  • Additivity property of x 2

    If two independent random variables X1 and X2 are distributed as chi-square with v1 and v2 degrees of freedom, respectively, Y = + X X 1 2 is a chi-square random variable with u = + v v 1 2 degrees of freedom. This generalizes to any number of independent chi-square random variables.

  • All possible (subsets) regressions

    A method of variable selection in regression that examines all possible subsets of the candidate regressor variables. Eficient computer algorithms have been developed for implementing all possible regressions

  • Asymptotic relative eficiency (ARE)

    Used to compare hypothesis tests. The ARE of one test relative to another is the limiting ratio of the sample sizes necessary to obtain identical error probabilities for the two procedures.

  • Average run length, or ARL

    The average number of samples taken in a process monitoring or inspection scheme until the scheme signals that the process is operating at a level different from the level in which it began.

  • Causal variable

    When y fx = ( ) and y is considered to be caused by x, x is sometimes called a causal variable

  • Cause-and-effect diagram

    A chart used to organize the various potential causes of a problem. Also called a ishbone diagram.

  • Central tendency

    The tendency of data to cluster around some value. Central tendency is usually expressed by a measure of location such as the mean, median, or mode.

  • Coeficient of determination

    See R 2 .

  • Conditional probability

    The probability of an event given that the random experiment produces an outcome in another event.

  • Conditional probability distribution

    The distribution of a random variable given that the random experiment produces an outcome in an event. The given event might specify values for one or more other random variables

  • Continuous random variable.

    A random variable with an interval (either inite or ininite) of real numbers for its range.

  • Correlation coeficient

    A dimensionless measure of the linear association between two variables, usually lying in the interval from ?1 to +1, with zero indicating the absence of correlation (but not necessarily the independence of the two variables).

  • Defect concentration diagram

    A quality tool that graphically shows the location of defects on a part or in a process.

  • Defects-per-unit control chart

    See U chart

  • Discrete uniform random variable

    A discrete random variable with a inite range and constant probability mass function.

  • Dispersion

    The amount of variability exhibited by data

  • Distribution free method(s)

    Any method of inference (hypothesis testing or conidence interval construction) that does not depend on the form of the underlying distribution of the observations. Sometimes called nonparametric method(s).

  • Distribution function

    Another name for a cumulative distribution function.

  • Eficiency

    A concept in parameter estimation that uses the variances of different estimators; essentially, an estimator is more eficient than another estimator if it has smaller variance. When estimators are biased, the concept requires modiication.

  • Fraction defective

    In statistical quality control, that portion of a number of units or the output of a process that is defective.