×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter Chapter 6: Probability

Introduction to Statistics and Data Analysis (with CengageNOW Printed Access Card) (Available Titles CengageNOW) | 3rd Edition | ISBN: 9780495118732 | Authors: Roxy Peck, Chris Olsen, Jay L. Devore

Full solutions for Introduction to Statistics and Data Analysis (with CengageNOW Printed Access Card) (Available Titles CengageNOW) | 3rd Edition

ISBN: 9780495118732

Introduction to Statistics and Data Analysis (with CengageNOW Printed Access Card) (Available Titles CengageNOW) | 3rd Edition | ISBN: 9780495118732 | Authors: Roxy Peck, Chris Olsen, Jay L. Devore

Solutions for Chapter Chapter 6: Probability

Solutions for Chapter Chapter 6
4 5 0 341 Reviews
12
1
Textbook: Introduction to Statistics and Data Analysis (with CengageNOW Printed Access Card) (Available Titles CengageNOW)
Edition: 3
Author: Roxy Peck, Chris Olsen, Jay L. Devore
ISBN: 9780495118732

Chapter Chapter 6: Probability includes 110 full step-by-step solutions. Introduction to Statistics and Data Analysis (with CengageNOW Printed Access Card) (Available Titles CengageNOW) was written by and is associated to the ISBN: 9780495118732. This expansive textbook survival guide covers the following chapters and their solutions. Since 110 problems in chapter Chapter 6: Probability have been answered, more than 15995 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Introduction to Statistics and Data Analysis (with CengageNOW Printed Access Card) (Available Titles CengageNOW), edition: 3.

Key Statistics Terms and definitions covered in this textbook
  • Additivity property of x 2

    If two independent random variables X1 and X2 are distributed as chi-square with v1 and v2 degrees of freedom, respectively, Y = + X X 1 2 is a chi-square random variable with u = + v v 1 2 degrees of freedom. This generalizes to any number of independent chi-square random variables.

  • Adjusted R 2

    A variation of the R 2 statistic that compensates for the number of parameters in a regression model. Essentially, the adjustment is a penalty for increasing the number of parameters in the model. Alias. In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Analysis of variance (ANOVA)

    A method of decomposing the total variability in a set of observations, as measured by the sum of the squares of these observations from their average, into component sums of squares that are associated with speciic deined sources of variation

  • Biased estimator

    Unbiased estimator.

  • Cause-and-effect diagram

    A chart used to organize the various potential causes of a problem. Also called a ishbone diagram.

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Combination.

    A subset selected without replacement from a set used to determine the number of outcomes in events and sample spaces.

  • Comparative experiment

    An experiment in which the treatments (experimental conditions) that are to be studied are included in the experiment. The data from the experiment are used to evaluate the treatments.

  • Components of variance

    The individual components of the total variance that are attributable to speciic sources. This usually refers to the individual variance components arising from a random or mixed model analysis of variance.

  • Conditional mean

    The mean of the conditional probability distribution of a random variable.

  • Conidence level

    Another term for the conidence coeficient.

  • Continuity correction.

    A correction factor used to improve the approximation to binomial probabilities from a normal distribution.

  • Counting techniques

    Formulas used to determine the number of elements in sample spaces and events.

  • Cumulative distribution function

    For a random variable X, the function of X deined as PX x ( ) ? that is used to specify the probability distribution.

  • Cumulative normal distribution function

    The cumulative distribution of the standard normal distribution, often denoted as ?( ) x and tabulated in Appendix Table II.

  • Design matrix

    A matrix that provides the tests that are to be conducted in an experiment.

  • Expected value

    The expected value of a random variable X is its long-term average or mean value. In the continuous case, the expected value of X is E X xf x dx ( ) = ?? ( ) ? ? where f ( ) x is the density function of the random variable X.

  • Fraction defective

    In statistical quality control, that portion of a number of units or the output of a process that is defective.

  • Frequency distribution

    An arrangement of the frequencies of observations in a sample or population according to the values that the observations take on

  • Hat matrix.

    In multiple regression, the matrix H XXX X = ( ) ? ? -1 . This a projection matrix that maps the vector of observed response values into a vector of itted values by yˆ = = X X X X y Hy ( ) ? ? ?1 .

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password