×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 11.4: Analysis of Variance

Essentials of Statistics | 5th Edition | ISBN: 9780321924599 | Authors: Mario F. Triola

Full solutions for Essentials of Statistics | 5th Edition

ISBN: 9780321924599

Essentials of Statistics | 5th Edition | ISBN: 9780321924599 | Authors: Mario F. Triola

Solutions for Chapter 11.4: Analysis of Variance

Solutions for Chapter 11.4
4 5 0 282 Reviews
17
3
Textbook: Essentials of Statistics
Edition: 5
Author: Mario F. Triola
ISBN: 9780321924599

Since 18 problems in chapter 11.4: Analysis of Variance have been answered, more than 14507 students have viewed full step-by-step solutions from this chapter. Essentials of Statistics was written by and is associated to the ISBN: 9780321924599. Chapter 11.4: Analysis of Variance includes 18 full step-by-step solutions. This textbook survival guide was created for the textbook: Essentials of Statistics, edition: 5. This expansive textbook survival guide covers the following chapters and their solutions.

Key Statistics Terms and definitions covered in this textbook
  • Adjusted R 2

    A variation of the R 2 statistic that compensates for the number of parameters in a regression model. Essentially, the adjustment is a penalty for increasing the number of parameters in the model. Alias. In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Average run length, or ARL

    The average number of samples taken in a process monitoring or inspection scheme until the scheme signals that the process is operating at a level different from the level in which it began.

  • Bayes’ estimator

    An estimator for a parameter obtained from a Bayesian method that uses a prior distribution for the parameter along with the conditional distribution of the data given the parameter to obtain the posterior distribution of the parameter. The estimator is obtained from the posterior distribution.

  • Bivariate distribution

    The joint probability distribution of two random variables.

  • Box plot (or box and whisker plot)

    A graphical display of data in which the box contains the middle 50% of the data (the interquartile range) with the median dividing it, and the whiskers extend to the smallest and largest values (or some deined lower and upper limits).

  • Cause-and-effect diagram

    A chart used to organize the various potential causes of a problem. Also called a ishbone diagram.

  • Chi-square test

    Any test of signiicance based on the chi-square distribution. The most common chi-square tests are (1) testing hypotheses about the variance or standard deviation of a normal distribution and (2) testing goodness of it of a theoretical distribution to sample data

  • Components of variance

    The individual components of the total variance that are attributable to speciic sources. This usually refers to the individual variance components arising from a random or mixed model analysis of variance.

  • Continuous uniform random variable

    A continuous random variable with range of a inite interval and a constant probability density function.

  • Convolution

    A method to derive the probability density function of the sum of two independent random variables from an integral (or sum) of probability density (or mass) functions.

  • Cook’s distance

    In regression, Cook’s distance is a measure of the inluence of each individual observation on the estimates of the regression model parameters. It expresses the distance that the vector of model parameter estimates with the ith observation removed lies from the vector of model parameter estimates based on all observations. Large values of Cook’s distance indicate that the observation is inluential.

  • Cumulative distribution function

    For a random variable X, the function of X deined as PX x ( ) ? that is used to specify the probability distribution.

  • Defect

    Used in statistical quality control, a defect is a particular type of nonconformance to speciications or requirements. Sometimes defects are classiied into types, such as appearance defects and functional defects.

  • Defect concentration diagram

    A quality tool that graphically shows the location of defects on a part or in a process.

  • Designed experiment

    An experiment in which the tests are planned in advance and the plans usually incorporate statistical models. See Experiment

  • Discrete distribution

    A probability distribution for a discrete random variable

  • Fixed factor (or fixed effect).

    In analysis of variance, a factor or effect is considered ixed if all the levels of interest for that factor are included in the experiment. Conclusions are then valid about this set of levels only, although when the factor is quantitative, it is customary to it a model to the data for interpolating between these levels.

  • Gamma function

    A function used in the probability density function of a gamma random variable that can be considered to extend factorials

  • Geometric random variable

    A discrete random variable that is the number of Bernoulli trials until a success occurs.

  • Harmonic mean

    The harmonic mean of a set of data values is the reciprocal of the arithmetic mean of the reciprocals of the data values; that is, h n x i n i = ? ? ? ? ? = ? ? 1 1 1 1 g .

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password