×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 6-2: Applications of the Normal Distribution

Elementary Statistics: A Step by Step Approach 8th ed. | 8th Edition | ISBN: 9780073386102 | Authors: Allan G Bluman Professor Emeritus

Full solutions for Elementary Statistics: A Step by Step Approach 8th ed. | 8th Edition

ISBN: 9780073386102

Elementary Statistics: A Step by Step Approach 8th ed. | 8th Edition | ISBN: 9780073386102 | Authors: Allan G Bluman Professor Emeritus

Solutions for Chapter 6-2: Applications of the Normal Distribution

Solutions for Chapter 6-2
4 5 0 407 Reviews
20
5
Textbook: Elementary Statistics: A Step by Step Approach 8th ed.
Edition: 8
Author: Allan G Bluman Professor Emeritus
ISBN: 9780073386102

Chapter 6-2: Applications of the Normal Distribution includes 42 full step-by-step solutions. This textbook survival guide was created for the textbook: Elementary Statistics: A Step by Step Approach 8th ed., edition: 8. Since 42 problems in chapter 6-2: Applications of the Normal Distribution have been answered, more than 37843 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Elementary Statistics: A Step by Step Approach 8th ed. was written by and is associated to the ISBN: 9780073386102.

Key Statistics Terms and definitions covered in this textbook
  • Acceptance region

    In hypothesis testing, a region in the sample space of the test statistic such that if the test statistic falls within it, the null hypothesis cannot be rejected. This terminology is used because rejection of H0 is always a strong conclusion and acceptance of H0 is generally a weak conclusion

  • Additivity property of x 2

    If two independent random variables X1 and X2 are distributed as chi-square with v1 and v2 degrees of freedom, respectively, Y = + X X 1 2 is a chi-square random variable with u = + v v 1 2 degrees of freedom. This generalizes to any number of independent chi-square random variables.

  • All possible (subsets) regressions

    A method of variable selection in regression that examines all possible subsets of the candidate regressor variables. Eficient computer algorithms have been developed for implementing all possible regressions

  • Analysis of variance (ANOVA)

    A method of decomposing the total variability in a set of observations, as measured by the sum of the squares of these observations from their average, into component sums of squares that are associated with speciic deined sources of variation

  • Assignable cause

    The portion of the variability in a set of observations that can be traced to speciic causes, such as operators, materials, or equipment. Also called a special cause.

  • Average

    See Arithmetic mean.

  • Box plot (or box and whisker plot)

    A graphical display of data in which the box contains the middle 50% of the data (the interquartile range) with the median dividing it, and the whiskers extend to the smallest and largest values (or some deined lower and upper limits).

  • Components of variance

    The individual components of the total variance that are attributable to speciic sources. This usually refers to the individual variance components arising from a random or mixed model analysis of variance.

  • Conditional probability

    The probability of an event given that the random experiment produces an outcome in another event.

  • Conditional variance.

    The variance of the conditional probability distribution of a random variable.

  • Conidence interval

    If it is possible to write a probability statement of the form PL U ( ) ? ? ? ? = ?1 where L and U are functions of only the sample data and ? is a parameter, then the interval between L and U is called a conidence interval (or a 100 1( )% ? ? conidence interval). The interpretation is that a statement that the parameter ? lies in this interval will be true 100 1( )% ? ? of the times that such a statement is made

  • Continuous random variable.

    A random variable with an interval (either inite or ininite) of real numbers for its range.

  • Covariance

    A measure of association between two random variables obtained as the expected value of the product of the two random variables around their means; that is, Cov(X Y, ) [( )( )] =? ? E X Y ? ? X Y .

  • Crossed factors

    Another name for factors that are arranged in a factorial experiment.

  • Cumulative distribution function

    For a random variable X, the function of X deined as PX x ( ) ? that is used to specify the probability distribution.

  • Cumulative sum control chart (CUSUM)

    A control chart in which the point plotted at time t is the sum of the measured deviations from target for all statistics up to time t

  • Discrete distribution

    A probability distribution for a discrete random variable

  • Finite population correction factor

    A term in the formula for the variance of a hypergeometric random variable.

  • Fraction defective

    In statistical quality control, that portion of a number of units or the output of a process that is defective.

  • Generating function

    A function that is used to determine properties of the probability distribution of a random variable. See Moment-generating function

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password