×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 8-6: Hypothesis Testing

Elementary Statistics: A Step by Step Approach | 7th Edition | ISBN: 9780073534978 | Authors: Allan G. Bluman

Full solutions for Elementary Statistics: A Step by Step Approach | 7th Edition

ISBN: 9780073534978

Elementary Statistics: A Step by Step Approach | 7th Edition | ISBN: 9780073534978 | Authors: Allan G. Bluman

Solutions for Chapter 8-6: Hypothesis Testing

Since 15 problems in chapter 8-6: Hypothesis Testing have been answered, more than 32630 students have viewed full step-by-step solutions from this chapter. Elementary Statistics: A Step by Step Approach was written by and is associated to the ISBN: 9780073534978. This textbook survival guide was created for the textbook: Elementary Statistics: A Step by Step Approach, edition: 7. Chapter 8-6: Hypothesis Testing includes 15 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions.

Key Statistics Terms and definitions covered in this textbook
  • 2 k factorial experiment.

    A full factorial experiment with k factors and all factors tested at only two levels (settings) each.

  • a-error (or a-risk)

    In hypothesis testing, an error incurred by failing to reject a null hypothesis when it is actually false (also called a type II error).

  • Acceptance region

    In hypothesis testing, a region in the sample space of the test statistic such that if the test statistic falls within it, the null hypothesis cannot be rejected. This terminology is used because rejection of H0 is always a strong conclusion and acceptance of H0 is generally a weak conclusion

  • All possible (subsets) regressions

    A method of variable selection in regression that examines all possible subsets of the candidate regressor variables. Eficient computer algorithms have been developed for implementing all possible regressions

  • Bias

    An effect that systematically distorts a statistical result or estimate, preventing it from representing the true quantity of interest.

  • Chi-square test

    Any test of signiicance based on the chi-square distribution. The most common chi-square tests are (1) testing hypotheses about the variance or standard deviation of a normal distribution and (2) testing goodness of it of a theoretical distribution to sample data

  • Combination.

    A subset selected without replacement from a set used to determine the number of outcomes in events and sample spaces.

  • Conditional probability mass function

    The probability mass function of the conditional probability distribution of a discrete random variable.

  • Contingency table.

    A tabular arrangement expressing the assignment of members of a data set according to two or more categories or classiication criteria

  • Contour plot

    A two-dimensional graphic used for a bivariate probability density function that displays curves for which the probability density function is constant.

  • Correction factor

    A term used for the quantity ( / )( ) 1 1 2 n xi i n ? = that is subtracted from xi i n 2 ? =1 to give the corrected sum of squares deined as (/ ) ( ) 1 1 2 n xx i x i n ? = i ? . The correction factor can also be written as nx 2 .

  • Cumulative normal distribution function

    The cumulative distribution of the standard normal distribution, often denoted as ?( ) x and tabulated in Appendix Table II.

  • Curvilinear regression

    An expression sometimes used for nonlinear regression models or polynomial regression models.

  • Error mean square

    The error sum of squares divided by its number of degrees of freedom.

  • Exponential random variable

    A series of tests in which changes are made to the system under study

  • Finite population correction factor

    A term in the formula for the variance of a hypergeometric random variable.

  • Fixed factor (or fixed effect).

    In analysis of variance, a factor or effect is considered ixed if all the levels of interest for that factor are included in the experiment. Conclusions are then valid about this set of levels only, although when the factor is quantitative, it is customary to it a model to the data for interpolating between these levels.

  • Gamma function

    A function used in the probability density function of a gamma random variable that can be considered to extend factorials

  • Generating function

    A function that is used to determine properties of the probability distribution of a random variable. See Moment-generating function

  • Goodness of fit

    In general, the agreement of a set of observed values and a set of theoretical values that depend on some hypothesis. The term is often used in itting a theoretical distribution to a set of observations.

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password