×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 9: Introduction to Statistics and Data Analysis

Probability and Statistics for Engineers and the Scientists | 9th Edition | ISBN: 9780321629111 | Authors: Ronald E. Walpole; Raymond H. Myers; Sharon L. Myers; Keying E. Ye

Full solutions for Probability and Statistics for Engineers and the Scientists | 9th Edition

ISBN: 9780321629111

Probability and Statistics for Engineers and the Scientists | 9th Edition | ISBN: 9780321629111 | Authors: Ronald E. Walpole; Raymond H. Myers; Sharon L. Myers; Keying E. Ye

Solutions for Chapter 9: Introduction to Statistics and Data Analysis

Solutions for Chapter 9
4 5 0 334 Reviews
23
5
Textbook: Probability and Statistics for Engineers and the Scientists
Edition: 9
Author: Ronald E. Walpole; Raymond H. Myers; Sharon L. Myers; Keying E. Ye
ISBN: 9780321629111

Summary of Chapter 9: Introduction to Statistics and Data Analysis

Learn about the basics and origins of Statistics and Data Analysis

This textbook survival guide was created for the textbook: Probability and Statistics for Engineers and the Scientists, edition: 9. This expansive textbook survival guide covers the following chapters and their solutions. Since 115 problems in chapter 9: Introduction to Statistics and Data Analysis have been answered, more than 448188 students have viewed full step-by-step solutions from this chapter. Chapter 9: Introduction to Statistics and Data Analysis includes 115 full step-by-step solutions. Probability and Statistics for Engineers and the Scientists was written by and is associated to the ISBN: 9780321629111.

Key Statistics Terms and definitions covered in this textbook
  • Alternative hypothesis

    In statistical hypothesis testing, this is a hypothesis other than the one that is being tested. The alternative hypothesis contains feasible conditions, whereas the null hypothesis speciies conditions that are under test

  • Asymptotic relative eficiency (ARE)

    Used to compare hypothesis tests. The ARE of one test relative to another is the limiting ratio of the sample sizes necessary to obtain identical error probabilities for the two procedures.

  • Bernoulli trials

    Sequences of independent trials with only two outcomes, generally called “success” and “failure,” in which the probability of success remains constant.

  • Binomial random variable

    A discrete random variable that equals the number of successes in a ixed number of Bernoulli trials.

  • Comparative experiment

    An experiment in which the treatments (experimental conditions) that are to be studied are included in the experiment. The data from the experiment are used to evaluate the treatments.

  • Conidence interval

    If it is possible to write a probability statement of the form PL U ( ) ? ? ? ? = ?1 where L and U are functions of only the sample data and ? is a parameter, then the interval between L and U is called a conidence interval (or a 100 1( )% ? ? conidence interval). The interpretation is that a statement that the parameter ? lies in this interval will be true 100 1( )% ? ? of the times that such a statement is made

  • Conidence level

    Another term for the conidence coeficient.

  • Contingency table.

    A tabular arrangement expressing the assignment of members of a data set according to two or more categories or classiication criteria

  • Critical value(s)

    The value of a statistic corresponding to a stated signiicance level as determined from the sampling distribution. For example, if PZ z PZ ( )( .) . ? =? = 0 025 . 1 96 0 025, then z0 025 . = 1 9. 6 is the critical value of z at the 0.025 level of signiicance. Crossed factors. Another name for factors that are arranged in a factorial experiment.

  • Curvilinear regression

    An expression sometimes used for nonlinear regression models or polynomial regression models.

  • Degrees of freedom.

    The number of independent comparisons that can be made among the elements of a sample. The term is analogous to the number of degrees of freedom for an object in a dynamic system, which is the number of independent coordinates required to determine the motion of the object.

  • Density function

    Another name for a probability density function

  • Discrete uniform random variable

    A discrete random variable with a inite range and constant probability mass function.

  • Error variance

    The variance of an error term or component in a model.

  • Estimate (or point estimate)

    The numerical value of a point estimator.

  • Estimator (or point estimator)

    A procedure for producing an estimate of a parameter of interest. An estimator is usually a function of only sample data values, and when these data values are available, it results in an estimate of the parameter of interest.

  • Expected value

    The expected value of a random variable X is its long-term average or mean value. In the continuous case, the expected value of X is E X xf x dx ( ) = ?? ( ) ? ? where f ( ) x is the density function of the random variable X.

  • F distribution.

    The distribution of the random variable deined as the ratio of two independent chi-square random variables, each divided by its number of degrees of freedom.

  • Forward selection

    A method of variable selection in regression, where variables are inserted one at a time into the model until no other variables that contribute signiicantly to the model can be found.

  • Fraction defective control chart

    See P chart