×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 3.9: Functions Of Normal Random Variables

Probability and Statistics with Reliability, Queuing, and Computer Science Applications | 2nd Edition | ISBN: 9781119285427 | Authors: Kishor S. Trivedi

Full solutions for Probability and Statistics with Reliability, Queuing, and Computer Science Applications | 2nd Edition

ISBN: 9781119285427

Probability and Statistics with Reliability, Queuing, and Computer Science Applications | 2nd Edition | ISBN: 9781119285427 | Authors: Kishor S. Trivedi

Solutions for Chapter 3.9: Functions Of Normal Random Variables

Solutions for Chapter 3.9
4 5 0 338 Reviews
12
5

This textbook survival guide was created for the textbook: Probability and Statistics with Reliability, Queuing, and Computer Science Applications , edition: 2. Probability and Statistics with Reliability, Queuing, and Computer Science Applications was written by and is associated to the ISBN: 9781119285427. This expansive textbook survival guide covers the following chapters and their solutions. Since 3 problems in chapter 3.9: Functions Of Normal Random Variables have been answered, more than 3143 students have viewed full step-by-step solutions from this chapter. Chapter 3.9: Functions Of Normal Random Variables includes 3 full step-by-step solutions.

Key Statistics Terms and definitions covered in this textbook
  • Acceptance region

    In hypothesis testing, a region in the sample space of the test statistic such that if the test statistic falls within it, the null hypothesis cannot be rejected. This terminology is used because rejection of H0 is always a strong conclusion and acceptance of H0 is generally a weak conclusion

  • Addition rule

    A formula used to determine the probability of the union of two (or more) events from the probabilities of the events and their intersection(s).

  • Additivity property of x 2

    If two independent random variables X1 and X2 are distributed as chi-square with v1 and v2 degrees of freedom, respectively, Y = + X X 1 2 is a chi-square random variable with u = + v v 1 2 degrees of freedom. This generalizes to any number of independent chi-square random variables.

  • Alternative hypothesis

    In statistical hypothesis testing, this is a hypothesis other than the one that is being tested. The alternative hypothesis contains feasible conditions, whereas the null hypothesis speciies conditions that are under test

  • Arithmetic mean

    The arithmetic mean of a set of numbers x1 , x2 ,…, xn is their sum divided by the number of observations, or ( / )1 1 n xi t n ? = . The arithmetic mean is usually denoted by x , and is often called the average

  • Axioms of probability

    A set of rules that probabilities deined on a sample space must follow. See Probability

  • Block

    In experimental design, a group of experimental units or material that is relatively homogeneous. The purpose of dividing experimental units into blocks is to produce an experimental design wherein variability within blocks is smaller than variability between blocks. This allows the factors of interest to be compared in an environment that has less variability than in an unblocked experiment.

  • Central limit theorem

    The simplest form of the central limit theorem states that the sum of n independently distributed random variables will tend to be normally distributed as n becomes large. It is a necessary and suficient condition that none of the variances of the individual random variables are large in comparison to their sum. There are more general forms of the central theorem that allow ininite variances and correlated random variables, and there is a multivariate version of the theorem.

  • Conditional probability

    The probability of an event given that the random experiment produces an outcome in another event.

  • Conditional probability density function

    The probability density function of the conditional probability distribution of a continuous random variable.

  • Conditional probability mass function

    The probability mass function of the conditional probability distribution of a discrete random variable.

  • Conidence level

    Another term for the conidence coeficient.

  • Defect concentration diagram

    A quality tool that graphically shows the location of defects on a part or in a process.

  • Deming

    W. Edwards Deming (1900–1993) was a leader in the use of statistical quality control.

  • Discrete uniform random variable

    A discrete random variable with a inite range and constant probability mass function.

  • Error propagation

    An analysis of how the variance of the random variable that represents that output of a system depends on the variances of the inputs. A formula exists when the output is a linear function of the inputs and the formula is simpliied if the inputs are assumed to be independent.

  • Estimate (or point estimate)

    The numerical value of a point estimator.

  • Factorial experiment

    A type of experimental design in which every level of one factor is tested in combination with every level of another factor. In general, in a factorial experiment, all possible combinations of factor levels are tested.

  • Finite population correction factor

    A term in the formula for the variance of a hypergeometric random variable.

  • Fraction defective

    In statistical quality control, that portion of a number of units or the output of a process that is defective.

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password