Make up to $500 this semester by taking notes for StudySoup as an Elite Notetaker Apply Now

Solutions for Chapter 6.4: The Poisson Process

Probability and Statistics with Reliability, Queuing, and Computer Science Applications | 2nd Edition | ISBN: 9781119285427 | Authors: Kishor S. Trivedi

Full solutions for Probability and Statistics with Reliability, Queuing, and Computer Science Applications | 2nd Edition

ISBN: 9781119285427

Probability and Statistics with Reliability, Queuing, and Computer Science Applications | 2nd Edition | ISBN: 9781119285427 | Authors: Kishor S. Trivedi

Solutions for Chapter 6.4: The Poisson Process

Since 6 problems in chapter 6.4: The Poisson Process have been answered, more than 1023 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Probability and Statistics with Reliability, Queuing, and Computer Science Applications , edition: 2. Probability and Statistics with Reliability, Queuing, and Computer Science Applications was written by Patricia and is associated to the ISBN: 9781119285427. Chapter 6.4: The Poisson Process includes 6 full step-by-step solutions.

Key Statistics Terms and definitions covered in this textbook
  • `-error (or `-risk)

    In hypothesis testing, an error incurred by rejecting a null hypothesis when it is actually true (also called a type I error).

  • Attribute

    A qualitative characteristic of an item or unit, usually arising in quality control. For example, classifying production units as defective or nondefective results in attributes data.

  • Bivariate distribution

    The joint probability distribution of two random variables.

  • Causal variable

    When y fx = ( ) and y is considered to be caused by x, x is sometimes called a causal variable

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Coeficient of determination

    See R 2 .

  • Combination.

    A subset selected without replacement from a set used to determine the number of outcomes in events and sample spaces.

  • Components of variance

    The individual components of the total variance that are attributable to speciic sources. This usually refers to the individual variance components arising from a random or mixed model analysis of variance.

  • Conditional probability mass function

    The probability mass function of the conditional probability distribution of a discrete random variable.

  • Conidence level

    Another term for the conidence coeficient.

  • Contingency table.

    A tabular arrangement expressing the assignment of members of a data set according to two or more categories or classiication criteria

  • Continuity correction.

    A correction factor used to improve the approximation to binomial probabilities from a normal distribution.

  • Continuous uniform random variable

    A continuous random variable with range of a inite interval and a constant probability density function.

  • Critical value(s)

    The value of a statistic corresponding to a stated signiicance level as determined from the sampling distribution. For example, if PZ z PZ ( )( .) . ? =? = 0 025 . 1 96 0 025, then z0 025 . = 1 9. 6 is the critical value of z at the 0.025 level of signiicance. Crossed factors. Another name for factors that are arranged in a factorial experiment.

  • Deming’s 14 points.

    A management philosophy promoted by W. Edwards Deming that emphasizes the importance of change and quality

  • Distribution free method(s)

    Any method of inference (hypothesis testing or conidence interval construction) that does not depend on the form of the underlying distribution of the observations. Sometimes called nonparametric method(s).

  • Error mean square

    The error sum of squares divided by its number of degrees of freedom.

  • Error propagation

    An analysis of how the variance of the random variable that represents that output of a system depends on the variances of the inputs. A formula exists when the output is a linear function of the inputs and the formula is simpliied if the inputs are assumed to be independent.

  • Experiment

    A series of tests in which changes are made to the system under study

  • Gamma random variable

    A random variable that generalizes an Erlang random variable to noninteger values of the parameter r

×
Log in to StudySoup
Get Full Access to Probability and Statistics with Reliability, Queuing, and Computer Science Applications

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Probability and Statistics with Reliability, Queuing, and Computer Science Applications
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here