×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 8.1: Introduction

Probability and Statistics with Reliability, Queuing, and Computer Science Applications | 2nd Edition | ISBN: 9781119285427 | Authors: Kishor S. Trivedi

Full solutions for Probability and Statistics with Reliability, Queuing, and Computer Science Applications | 2nd Edition

ISBN: 9781119285427

Probability and Statistics with Reliability, Queuing, and Computer Science Applications | 2nd Edition | ISBN: 9781119285427 | Authors: Kishor S. Trivedi

Solutions for Chapter 8.1: Introduction

Chapter 8.1: Introduction includes 7 full step-by-step solutions. Probability and Statistics with Reliability, Queuing, and Computer Science Applications was written by and is associated to the ISBN: 9781119285427. Since 7 problems in chapter 8.1: Introduction have been answered, more than 2643 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Probability and Statistics with Reliability, Queuing, and Computer Science Applications , edition: 2. This expansive textbook survival guide covers the following chapters and their solutions.

Key Statistics Terms and definitions covered in this textbook
  • Bivariate distribution

    The joint probability distribution of two random variables.

  • Bivariate normal distribution

    The joint distribution of two normal random variables

  • Box plot (or box and whisker plot)

    A graphical display of data in which the box contains the middle 50% of the data (the interquartile range) with the median dividing it, and the whiskers extend to the smallest and largest values (or some deined lower and upper limits).

  • Cause-and-effect diagram

    A chart used to organize the various potential causes of a problem. Also called a ishbone diagram.

  • Chi-square (or chi-squared) random variable

    A continuous random variable that results from the sum of squares of independent standard normal random variables. It is a special case of a gamma random variable.

  • Chi-square test

    Any test of signiicance based on the chi-square distribution. The most common chi-square tests are (1) testing hypotheses about the variance or standard deviation of a normal distribution and (2) testing goodness of it of a theoretical distribution to sample data

  • Conditional probability mass function

    The probability mass function of the conditional probability distribution of a discrete random variable.

  • Conditional variance.

    The variance of the conditional probability distribution of a random variable.

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Conidence interval

    If it is possible to write a probability statement of the form PL U ( ) ? ? ? ? = ?1 where L and U are functions of only the sample data and ? is a parameter, then the interval between L and U is called a conidence interval (or a 100 1( )% ? ? conidence interval). The interpretation is that a statement that the parameter ? lies in this interval will be true 100 1( )% ? ? of the times that such a statement is made

  • Defect concentration diagram

    A quality tool that graphically shows the location of defects on a part or in a process.

  • Defects-per-unit control chart

    See U chart

  • Erlang random variable

    A continuous random variable that is the sum of a ixed number of independent, exponential random variables.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Fixed factor (or fixed effect).

    In analysis of variance, a factor or effect is considered ixed if all the levels of interest for that factor are included in the experiment. Conclusions are then valid about this set of levels only, although when the factor is quantitative, it is customary to it a model to the data for interpolating between these levels.

  • Fraction defective

    In statistical quality control, that portion of a number of units or the output of a process that is defective.

  • Fraction defective control chart

    See P chart

  • Fractional factorial experiment

    A type of factorial experiment in which not all possible treatment combinations are run. This is usually done to reduce the size of an experiment with several factors.

  • Frequency distribution

    An arrangement of the frequencies of observations in a sample or population according to the values that the observations take on

  • Generating function

    A function that is used to determine properties of the probability distribution of a random variable. See Moment-generating function

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password