Solutions for Chapter 10.2.3.4: Sampling from the Bernoulli Distribution.

Probability and Statistics with Reliability, Queuing, and Computer Science Applications | 2nd Edition | ISBN: 9781119285427 | Authors: Kishor S. Trivedi

Full solutions for Probability and Statistics with Reliability, Queuing, and Computer Science Applications | 2nd Edition

ISBN: 9781119285427

Probability and Statistics with Reliability, Queuing, and Computer Science Applications | 2nd Edition | ISBN: 9781119285427 | Authors: Kishor S. Trivedi

Solutions for Chapter 10.2.3.4: Sampling from the Bernoulli Distribution.

Since 4 problems in chapter 10.2.3.4: Sampling from the Bernoulli Distribution. have been answered, more than 1262 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Probability and Statistics with Reliability, Queuing, and Computer Science Applications was written by Patricia and is associated to the ISBN: 9781119285427. Chapter 10.2.3.4: Sampling from the Bernoulli Distribution. includes 4 full step-by-step solutions. This textbook survival guide was created for the textbook: Probability and Statistics with Reliability, Queuing, and Computer Science Applications , edition: 2.

Key Statistics Terms and definitions covered in this textbook
  • All possible (subsets) regressions

    A method of variable selection in regression that examines all possible subsets of the candidate regressor variables. Eficient computer algorithms have been developed for implementing all possible regressions

  • Analytic study

    A study in which a sample from a population is used to make inference to a future population. Stability needs to be assumed. See Enumerative study

  • Bayes’ theorem

    An equation for a conditional probability such as PA B ( | ) in terms of the reverse conditional probability PB A ( | ).

  • Central composite design (CCD)

    A second-order response surface design in k variables consisting of a two-level factorial, 2k axial runs, and one or more center points. The two-level factorial portion of a CCD can be a fractional factorial design when k is large. The CCD is the most widely used design for itting a second-order model.

  • Chi-square test

    Any test of signiicance based on the chi-square distribution. The most common chi-square tests are (1) testing hypotheses about the variance or standard deviation of a normal distribution and (2) testing goodness of it of a theoretical distribution to sample data

  • Components of variance

    The individual components of the total variance that are attributable to speciic sources. This usually refers to the individual variance components arising from a random or mixed model analysis of variance.

  • Conditional probability

    The probability of an event given that the random experiment produces an outcome in another event.

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Continuity correction.

    A correction factor used to improve the approximation to binomial probabilities from a normal distribution.

  • Control limits

    See Control chart.

  • Crossed factors

    Another name for factors that are arranged in a factorial experiment.

  • Curvilinear regression

    An expression sometimes used for nonlinear regression models or polynomial regression models.

  • Defect concentration diagram

    A quality tool that graphically shows the location of defects on a part or in a process.

  • Deming

    W. Edwards Deming (1900–1993) was a leader in the use of statistical quality control.

  • Error mean square

    The error sum of squares divided by its number of degrees of freedom.

  • F distribution.

    The distribution of the random variable deined as the ratio of two independent chi-square random variables, each divided by its number of degrees of freedom.

  • F-test

    Any test of signiicance involving the F distribution. The most common F-tests are (1) testing hypotheses about the variances or standard deviations of two independent normal distributions, (2) testing hypotheses about treatment means or variance components in the analysis of variance, and (3) testing signiicance of regression or tests on subsets of parameters in a regression model.

  • Fraction defective

    In statistical quality control, that portion of a number of units or the output of a process that is defective.

  • Gamma function

    A function used in the probability density function of a gamma random variable that can be considered to extend factorials

  • Gaussian distribution

    Another name for the normal distribution, based on the strong connection of Karl F. Gauss to the normal distribution; often used in physics and electrical engineering applications

×
Log in to StudySoup
Get Full Access to Probability and Statistics with Reliability, Queuing, and Computer Science Applications

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Probability and Statistics with Reliability, Queuing, and Computer Science Applications
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here