×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 9: Coping with NP-completeness

Algorithms | 1st Edition | ISBN: 9780073523408 | Authors: Sanjoy Dasgupta Algorithms, Christos H. Papadimitriou Algorithms, Umesh Vazirani Algorithms

Full solutions for Algorithms | 1st Edition

ISBN: 9780073523408

Algorithms | 1st Edition | ISBN: 9780073523408 | Authors: Sanjoy Dasgupta Algorithms, Christos H. Papadimitriou Algorithms, Umesh Vazirani Algorithms

Solutions for Chapter 9: Coping with NP-completeness

This textbook survival guide was created for the textbook: Algorithms , edition: 1. Algorithms was written by and is associated to the ISBN: 9780073523408. Since 10 problems in chapter 9: Coping with NP-completeness have been answered, more than 14371 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 9: Coping with NP-completeness includes 10 full step-by-step solutions.

Key Statistics Terms and definitions covered in this textbook
  • 2 k factorial experiment.

    A full factorial experiment with k factors and all factors tested at only two levels (settings) each.

  • `-error (or `-risk)

    In hypothesis testing, an error incurred by rejecting a null hypothesis when it is actually true (also called a type I error).

  • Assignable cause

    The portion of the variability in a set of observations that can be traced to speciic causes, such as operators, materials, or equipment. Also called a special cause.

  • Attribute

    A qualitative characteristic of an item or unit, usually arising in quality control. For example, classifying production units as defective or nondefective results in attributes data.

  • Average run length, or ARL

    The average number of samples taken in a process monitoring or inspection scheme until the scheme signals that the process is operating at a level different from the level in which it began.

  • Axioms of probability

    A set of rules that probabilities deined on a sample space must follow. See Probability

  • Comparative experiment

    An experiment in which the treatments (experimental conditions) that are to be studied are included in the experiment. The data from the experiment are used to evaluate the treatments.

  • Conditional probability mass function

    The probability mass function of the conditional probability distribution of a discrete random variable.

  • Conidence level

    Another term for the conidence coeficient.

  • Contour plot

    A two-dimensional graphic used for a bivariate probability density function that displays curves for which the probability density function is constant.

  • Contrast

    A linear function of treatment means with coeficients that total zero. A contrast is a summary of treatment means that is of interest in an experiment.

  • Control chart

    A graphical display used to monitor a process. It usually consists of a horizontal center line corresponding to the in-control value of the parameter that is being monitored and lower and upper control limits. The control limits are determined by statistical criteria and are not arbitrary, nor are they related to speciication limits. If sample points fall within the control limits, the process is said to be in-control, or free from assignable causes. Points beyond the control limits indicate an out-of-control process; that is, assignable causes are likely present. This signals the need to ind and remove the assignable causes.

  • Correlation matrix

    A square matrix that contains the correlations among a set of random variables, say, XX X 1 2 k , ,…, . The main diagonal elements of the matrix are unity and the off-diagonal elements rij are the correlations between Xi and Xj .

  • Dispersion

    The amount of variability exhibited by data

  • Error of estimation

    The difference between an estimated value and the true value.

  • Event

    A subset of a sample space.

  • Fixed factor (or fixed effect).

    In analysis of variance, a factor or effect is considered ixed if all the levels of interest for that factor are included in the experiment. Conclusions are then valid about this set of levels only, although when the factor is quantitative, it is customary to it a model to the data for interpolating between these levels.

  • Generator

    Effects in a fractional factorial experiment that are used to construct the experimental tests used in the experiment. The generators also deine the aliases.

  • Geometric mean.

    The geometric mean of a set of n positive data values is the nth root of the product of the data values; that is, g x i n i n = ( ) = / w 1 1 .

  • Hat matrix.

    In multiple regression, the matrix H XXX X = ( ) ? ? -1 . This a projection matrix that maps the vector of observed response values into a vector of itted values by yˆ = = X X X X y Hy ( ) ? ? ?1 .

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password