×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 9-1: HYPOTHESIS TESTING

Applied Statistics and Probability for Engineers | 3rd Edition | ISBN: 9780471204541 | Authors: Douglas C. Montgomery, George C. Runger

Full solutions for Applied Statistics and Probability for Engineers | 3rd Edition

ISBN: 9780471204541

Applied Statistics and Probability for Engineers | 3rd Edition | ISBN: 9780471204541 | Authors: Douglas C. Montgomery, George C. Runger

Solutions for Chapter 9-1: HYPOTHESIS TESTING

Solutions for Chapter 9-1
4 5 0 396 Reviews
21
0
Textbook: Applied Statistics and Probability for Engineers
Edition: 3
Author: Douglas C. Montgomery, George C. Runger
ISBN: 9780471204541

Chapter 9-1: HYPOTHESIS TESTING includes 19 full step-by-step solutions. This textbook survival guide was created for the textbook: Applied Statistics and Probability for Engineers , edition: 3. Since 19 problems in chapter 9-1: HYPOTHESIS TESTING have been answered, more than 22599 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Applied Statistics and Probability for Engineers was written by and is associated to the ISBN: 9780471204541.

Key Statistics Terms and definitions covered in this textbook
  • 2 k factorial experiment.

    A full factorial experiment with k factors and all factors tested at only two levels (settings) each.

  • `-error (or `-risk)

    In hypothesis testing, an error incurred by rejecting a null hypothesis when it is actually true (also called a type I error).

  • Asymptotic relative eficiency (ARE)

    Used to compare hypothesis tests. The ARE of one test relative to another is the limiting ratio of the sample sizes necessary to obtain identical error probabilities for the two procedures.

  • Attribute control chart

    Any control chart for a discrete random variable. See Variables control chart.

  • Block

    In experimental design, a group of experimental units or material that is relatively homogeneous. The purpose of dividing experimental units into blocks is to produce an experimental design wherein variability within blocks is smaller than variability between blocks. This allows the factors of interest to be compared in an environment that has less variability than in an unblocked experiment.

  • Chi-square test

    Any test of signiicance based on the chi-square distribution. The most common chi-square tests are (1) testing hypotheses about the variance or standard deviation of a normal distribution and (2) testing goodness of it of a theoretical distribution to sample data

  • Comparative experiment

    An experiment in which the treatments (experimental conditions) that are to be studied are included in the experiment. The data from the experiment are used to evaluate the treatments.

  • Conditional mean

    The mean of the conditional probability distribution of a random variable.

  • Conditional probability density function

    The probability density function of the conditional probability distribution of a continuous random variable.

  • Contingency table.

    A tabular arrangement expressing the assignment of members of a data set according to two or more categories or classiication criteria

  • Cumulative distribution function

    For a random variable X, the function of X deined as PX x ( ) ? that is used to specify the probability distribution.

  • Curvilinear regression

    An expression sometimes used for nonlinear regression models or polynomial regression models.

  • Deming’s 14 points.

    A management philosophy promoted by W. Edwards Deming that emphasizes the importance of change and quality

  • Discrete random variable

    A random variable with a inite (or countably ininite) range.

  • Dispersion

    The amount of variability exhibited by data

  • Enumerative study

    A study in which a sample from a population is used to make inference to the population. See Analytic study

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Fixed factor (or fixed effect).

    In analysis of variance, a factor or effect is considered ixed if all the levels of interest for that factor are included in the experiment. Conclusions are then valid about this set of levels only, although when the factor is quantitative, it is customary to it a model to the data for interpolating between these levels.

  • Gaussian distribution

    Another name for the normal distribution, based on the strong connection of Karl F. Gauss to the normal distribution; often used in physics and electrical engineering applications

  • Generator

    Effects in a fractional factorial experiment that are used to construct the experimental tests used in the experiment. The generators also deine the aliases.

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password