×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 4.4: Statistics for Engineers and Scientists 4th Edition

Statistics for Engineers and Scientists | 4th Edition | ISBN: 9780073401331 | Authors: William Navidi

Full solutions for Statistics for Engineers and Scientists | 4th Edition

ISBN: 9780073401331

Statistics for Engineers and Scientists | 4th Edition | ISBN: 9780073401331 | Authors: William Navidi

Solutions for Chapter 4.4

Solutions for Chapter 4.4
4 5 0 355 Reviews
17
5
Textbook: Statistics for Engineers and Scientists
Edition: 4
Author: William Navidi
ISBN: 9780073401331

This textbook survival guide was created for the textbook: Statistics for Engineers and Scientists , edition: 4. Statistics for Engineers and Scientists was written by and is associated to the ISBN: 9780073401331. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 4.4 includes 18 full step-by-step solutions. Since 18 problems in chapter 4.4 have been answered, more than 266436 students have viewed full step-by-step solutions from this chapter.

Key Statistics Terms and definitions covered in this textbook
  • `-error (or `-risk)

    In hypothesis testing, an error incurred by rejecting a null hypothesis when it is actually true (also called a type I error).

  • Addition rule

    A formula used to determine the probability of the union of two (or more) events from the probabilities of the events and their intersection(s).

  • Alternative hypothesis

    In statistical hypothesis testing, this is a hypothesis other than the one that is being tested. The alternative hypothesis contains feasible conditions, whereas the null hypothesis speciies conditions that are under test

  • Assignable cause

    The portion of the variability in a set of observations that can be traced to speciic causes, such as operators, materials, or equipment. Also called a special cause.

  • Average

    See Arithmetic mean.

  • Bimodal distribution.

    A distribution with two modes

  • Binomial random variable

    A discrete random variable that equals the number of successes in a ixed number of Bernoulli trials.

  • Conditional probability distribution

    The distribution of a random variable given that the random experiment produces an outcome in an event. The given event might specify values for one or more other random variables

  • Confounding

    When a factorial experiment is run in blocks and the blocks are too small to contain a complete replicate of the experiment, one can run a fraction of the replicate in each block, but this results in losing information on some effects. These effects are linked with or confounded with the blocks. In general, when two factors are varied such that their individual effects cannot be determined separately, their effects are said to be confounded.

  • Critical value(s)

    The value of a statistic corresponding to a stated signiicance level as determined from the sampling distribution. For example, if PZ z PZ ( )( .) . ? =? = 0 025 . 1 96 0 025, then z0 025 . = 1 9. 6 is the critical value of z at the 0.025 level of signiicance. Crossed factors. Another name for factors that are arranged in a factorial experiment.

  • Crossed factors

    Another name for factors that are arranged in a factorial experiment.

  • Deming

    W. Edwards Deming (1900–1993) was a leader in the use of statistical quality control.

  • Dispersion

    The amount of variability exhibited by data

  • Estimate (or point estimate)

    The numerical value of a point estimator.

  • Estimator (or point estimator)

    A procedure for producing an estimate of a parameter of interest. An estimator is usually a function of only sample data values, and when these data values are available, it results in an estimate of the parameter of interest.

  • Exhaustive

    A property of a collection of events that indicates that their union equals the sample space.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Fractional factorial experiment

    A type of factorial experiment in which not all possible treatment combinations are run. This is usually done to reduce the size of an experiment with several factors.

  • Generating function

    A function that is used to determine properties of the probability distribution of a random variable. See Moment-generating function

  • Goodness of fit

    In general, the agreement of a set of observed values and a set of theoretical values that depend on some hypothesis. The term is often used in itting a theoretical distribution to a set of observations.

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password