×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 5.4: Statistics for Engineers and Scientists 4th Edition

Statistics for Engineers and Scientists | 4th Edition | ISBN: 9780073401331 | Authors: William Navidi

Full solutions for Statistics for Engineers and Scientists | 4th Edition

ISBN: 9780073401331

Statistics for Engineers and Scientists | 4th Edition | ISBN: 9780073401331 | Authors: William Navidi

Solutions for Chapter 5.4

Since 14 problems in chapter 5.4 have been answered, more than 445474 students have viewed full step-by-step solutions from this chapter. Statistics for Engineers and Scientists was written by and is associated to the ISBN: 9780073401331. Chapter 5.4 includes 14 full step-by-step solutions. This textbook survival guide was created for the textbook: Statistics for Engineers and Scientists , edition: 4. This expansive textbook survival guide covers the following chapters and their solutions.

Key Statistics Terms and definitions covered in this textbook
  • Addition rule

    A formula used to determine the probability of the union of two (or more) events from the probabilities of the events and their intersection(s).

  • Adjusted R 2

    A variation of the R 2 statistic that compensates for the number of parameters in a regression model. Essentially, the adjustment is a penalty for increasing the number of parameters in the model. Alias. In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • All possible (subsets) regressions

    A method of variable selection in regression that examines all possible subsets of the candidate regressor variables. Eficient computer algorithms have been developed for implementing all possible regressions

  • Assignable cause

    The portion of the variability in a set of observations that can be traced to speciic causes, such as operators, materials, or equipment. Also called a special cause.

  • Asymptotic relative eficiency (ARE)

    Used to compare hypothesis tests. The ARE of one test relative to another is the limiting ratio of the sample sizes necessary to obtain identical error probabilities for the two procedures.

  • Bayes’ estimator

    An estimator for a parameter obtained from a Bayesian method that uses a prior distribution for the parameter along with the conditional distribution of the data given the parameter to obtain the posterior distribution of the parameter. The estimator is obtained from the posterior distribution.

  • Block

    In experimental design, a group of experimental units or material that is relatively homogeneous. The purpose of dividing experimental units into blocks is to produce an experimental design wherein variability within blocks is smaller than variability between blocks. This allows the factors of interest to be compared in an environment that has less variability than in an unblocked experiment.

  • Causal variable

    When y fx = ( ) and y is considered to be caused by x, x is sometimes called a causal variable

  • Central composite design (CCD)

    A second-order response surface design in k variables consisting of a two-level factorial, 2k axial runs, and one or more center points. The two-level factorial portion of a CCD can be a fractional factorial design when k is large. The CCD is the most widely used design for itting a second-order model.

  • Central tendency

    The tendency of data to cluster around some value. Central tendency is usually expressed by a measure of location such as the mean, median, or mode.

  • Confounding

    When a factorial experiment is run in blocks and the blocks are too small to contain a complete replicate of the experiment, one can run a fraction of the replicate in each block, but this results in losing information on some effects. These effects are linked with or confounded with the blocks. In general, when two factors are varied such that their individual effects cannot be determined separately, their effects are said to be confounded.

  • Consistent estimator

    An estimator that converges in probability to the true value of the estimated parameter as the sample size increases.

  • Control limits

    See Control chart.

  • Decision interval

    A parameter in a tabular CUSUM algorithm that is determined from a trade-off between false alarms and the detection of assignable causes.

  • Degrees of freedom.

    The number of independent comparisons that can be made among the elements of a sample. The term is analogous to the number of degrees of freedom for an object in a dynamic system, which is the number of independent coordinates required to determine the motion of the object.

  • Discrete distribution

    A probability distribution for a discrete random variable

  • Expected value

    The expected value of a random variable X is its long-term average or mean value. In the continuous case, the expected value of X is E X xf x dx ( ) = ?? ( ) ? ? where f ( ) x is the density function of the random variable X.

  • Factorial experiment

    A type of experimental design in which every level of one factor is tested in combination with every level of another factor. In general, in a factorial experiment, all possible combinations of factor levels are tested.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Fraction defective control chart

    See P chart