×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 9: Statistics for Engineers and Scientists 4th Edition

Statistics for Engineers and Scientists | 4th Edition | ISBN: 9780073401331 | Authors: William Navidi

Full solutions for Statistics for Engineers and Scientists | 4th Edition

ISBN: 9780073401331

Statistics for Engineers and Scientists | 4th Edition | ISBN: 9780073401331 | Authors: William Navidi

Solutions for Chapter 9

Solutions for Chapter 9
4 5 0 378 Reviews
31
3
Textbook: Statistics for Engineers and Scientists
Edition: 4
Author: William Navidi
ISBN: 9780073401331

Since 24 problems in chapter 9 have been answered, more than 284801 students have viewed full step-by-step solutions from this chapter. Statistics for Engineers and Scientists was written by and is associated to the ISBN: 9780073401331. This textbook survival guide was created for the textbook: Statistics for Engineers and Scientists , edition: 4. Chapter 9 includes 24 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions.

Key Statistics Terms and definitions covered in this textbook
  • 2 k factorial experiment.

    A full factorial experiment with k factors and all factors tested at only two levels (settings) each.

  • `-error (or `-risk)

    In hypothesis testing, an error incurred by rejecting a null hypothesis when it is actually true (also called a type I error).

  • Alias

    In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Alternative hypothesis

    In statistical hypothesis testing, this is a hypothesis other than the one that is being tested. The alternative hypothesis contains feasible conditions, whereas the null hypothesis speciies conditions that are under test

  • Analytic study

    A study in which a sample from a population is used to make inference to a future population. Stability needs to be assumed. See Enumerative study

  • Bernoulli trials

    Sequences of independent trials with only two outcomes, generally called “success” and “failure,” in which the probability of success remains constant.

  • Bias

    An effect that systematically distorts a statistical result or estimate, preventing it from representing the true quantity of interest.

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Chi-square test

    Any test of signiicance based on the chi-square distribution. The most common chi-square tests are (1) testing hypotheses about the variance or standard deviation of a normal distribution and (2) testing goodness of it of a theoretical distribution to sample data

  • Conditional mean

    The mean of the conditional probability distribution of a random variable.

  • Conditional probability distribution

    The distribution of a random variable given that the random experiment produces an outcome in an event. The given event might specify values for one or more other random variables

  • Conditional probability mass function

    The probability mass function of the conditional probability distribution of a discrete random variable.

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Correlation coeficient

    A dimensionless measure of the linear association between two variables, usually lying in the interval from ?1 to +1, with zero indicating the absence of correlation (but not necessarily the independence of the two variables).

  • Dispersion

    The amount of variability exhibited by data

  • Erlang random variable

    A continuous random variable that is the sum of a ixed number of independent, exponential random variables.

  • Estimator (or point estimator)

    A procedure for producing an estimate of a parameter of interest. An estimator is usually a function of only sample data values, and when these data values are available, it results in an estimate of the parameter of interest.

  • Exhaustive

    A property of a collection of events that indicates that their union equals the sample space.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Generating function

    A function that is used to determine properties of the probability distribution of a random variable. See Moment-generating function

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password