×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 14: Analysis of Categorical Data

Mathematical Statistics with Applications | 7th Edition | ISBN: 9780495110811 | Authors: Dennis Wackerly; William Mendenhall; Richard L. Scheaffer

Full solutions for Mathematical Statistics with Applications | 7th Edition

ISBN: 9780495110811

Mathematical Statistics with Applications | 7th Edition | ISBN: 9780495110811 | Authors: Dennis Wackerly; William Mendenhall; Richard L. Scheaffer

Solutions for Chapter 14: Analysis of Categorical Data

Solutions for Chapter 14
4 5 0 256 Reviews
15
2
Textbook: Mathematical Statistics with Applications
Edition: 7
Author: Dennis Wackerly; William Mendenhall; Richard L. Scheaffer
ISBN: 9780495110811

Mathematical Statistics with Applications was written by and is associated to the ISBN: 9780495110811. This textbook survival guide was created for the textbook: Mathematical Statistics with Applications , edition: 7. Since 37 problems in chapter 14: Analysis of Categorical Data have been answered, more than 164474 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 14: Analysis of Categorical Data includes 37 full step-by-step solutions.

Key Statistics Terms and definitions covered in this textbook
  • Arithmetic mean

    The arithmetic mean of a set of numbers x1 , x2 ,…, xn is their sum divided by the number of observations, or ( / )1 1 n xi t n ? = . The arithmetic mean is usually denoted by x , and is often called the average

  • Assignable cause

    The portion of the variability in a set of observations that can be traced to speciic causes, such as operators, materials, or equipment. Also called a special cause.

  • Asymptotic relative eficiency (ARE)

    Used to compare hypothesis tests. The ARE of one test relative to another is the limiting ratio of the sample sizes necessary to obtain identical error probabilities for the two procedures.

  • Bayes’ estimator

    An estimator for a parameter obtained from a Bayesian method that uses a prior distribution for the parameter along with the conditional distribution of the data given the parameter to obtain the posterior distribution of the parameter. The estimator is obtained from the posterior distribution.

  • Bimodal distribution.

    A distribution with two modes

  • Block

    In experimental design, a group of experimental units or material that is relatively homogeneous. The purpose of dividing experimental units into blocks is to produce an experimental design wherein variability within blocks is smaller than variability between blocks. This allows the factors of interest to be compared in an environment that has less variability than in an unblocked experiment.

  • Box plot (or box and whisker plot)

    A graphical display of data in which the box contains the middle 50% of the data (the interquartile range) with the median dividing it, and the whiskers extend to the smallest and largest values (or some deined lower and upper limits).

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Coeficient of determination

    See R 2 .

  • Comparative experiment

    An experiment in which the treatments (experimental conditions) that are to be studied are included in the experiment. The data from the experiment are used to evaluate the treatments.

  • Continuous uniform random variable

    A continuous random variable with range of a inite interval and a constant probability density function.

  • Counting techniques

    Formulas used to determine the number of elements in sample spaces and events.

  • Decision interval

    A parameter in a tabular CUSUM algorithm that is determined from a trade-off between false alarms and the detection of assignable causes.

  • Defect concentration diagram

    A quality tool that graphically shows the location of defects on a part or in a process.

  • Defects-per-unit control chart

    See U chart

  • Designed experiment

    An experiment in which the tests are planned in advance and the plans usually incorporate statistical models. See Experiment

  • Error sum of squares

    In analysis of variance, this is the portion of total variability that is due to the random component in the data. It is usually based on replication of observations at certain treatment combinations in the experiment. It is sometimes called the residual sum of squares, although this is really a better term to use only when the sum of squares is based on the remnants of a model-itting process and not on replication.

  • Estimate (or point estimate)

    The numerical value of a point estimator.

  • Extra sum of squares method

    A method used in regression analysis to conduct a hypothesis test for the additional contribution of one or more variables to a model.

  • Frequency distribution

    An arrangement of the frequencies of observations in a sample or population according to the values that the observations take on

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password