×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 7: Linear Regression

Stats Modeling the World | 4th Edition | ISBN: 9780321854018 | Authors: David E. Bock, Paul F. Velleman, Richard D. De Veaux

Full solutions for Stats Modeling the World | 4th Edition

ISBN: 9780321854018

Stats Modeling the World | 4th Edition | ISBN: 9780321854018 | Authors: David E. Bock, Paul F. Velleman, Richard D. De Veaux

Solutions for Chapter 7: Linear Regression

Solutions for Chapter 7
4 5 0 338 Reviews
21
0
Textbook: Stats Modeling the World
Edition: 4
Author: David E. Bock, Paul F. Velleman, Richard D. De Veaux
ISBN: 9780321854018

Chapter 7: Linear Regression includes 66 full step-by-step solutions. Since 66 problems in chapter 7: Linear Regression have been answered, more than 21308 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Stats Modeling the World, edition: 4. This expansive textbook survival guide covers the following chapters and their solutions. Stats Modeling the World was written by and is associated to the ISBN: 9780321854018.

Key Statistics Terms and definitions covered in this textbook
  • a-error (or a-risk)

    In hypothesis testing, an error incurred by failing to reject a null hypothesis when it is actually false (also called a type II error).

  • Analysis of variance (ANOVA)

    A method of decomposing the total variability in a set of observations, as measured by the sum of the squares of these observations from their average, into component sums of squares that are associated with speciic deined sources of variation

  • Arithmetic mean

    The arithmetic mean of a set of numbers x1 , x2 ,…, xn is their sum divided by the number of observations, or ( / )1 1 n xi t n ? = . The arithmetic mean is usually denoted by x , and is often called the average

  • Bimodal distribution.

    A distribution with two modes

  • Box plot (or box and whisker plot)

    A graphical display of data in which the box contains the middle 50% of the data (the interquartile range) with the median dividing it, and the whiskers extend to the smallest and largest values (or some deined lower and upper limits).

  • Completely randomized design (or experiment)

    A type of experimental design in which the treatments or design factors are assigned to the experimental units in a random manner. In designed experiments, a completely randomized design results from running all of the treatment combinations in random order.

  • Conidence interval

    If it is possible to write a probability statement of the form PL U ( ) ? ? ? ? = ?1 where L and U are functions of only the sample data and ? is a parameter, then the interval between L and U is called a conidence interval (or a 100 1( )% ? ? conidence interval). The interpretation is that a statement that the parameter ? lies in this interval will be true 100 1( )% ? ? of the times that such a statement is made

  • Contour plot

    A two-dimensional graphic used for a bivariate probability density function that displays curves for which the probability density function is constant.

  • Control chart

    A graphical display used to monitor a process. It usually consists of a horizontal center line corresponding to the in-control value of the parameter that is being monitored and lower and upper control limits. The control limits are determined by statistical criteria and are not arbitrary, nor are they related to speciication limits. If sample points fall within the control limits, the process is said to be in-control, or free from assignable causes. Points beyond the control limits indicate an out-of-control process; that is, assignable causes are likely present. This signals the need to ind and remove the assignable causes.

  • Convolution

    A method to derive the probability density function of the sum of two independent random variables from an integral (or sum) of probability density (or mass) functions.

  • Correction factor

    A term used for the quantity ( / )( ) 1 1 2 n xi i n ? = that is subtracted from xi i n 2 ? =1 to give the corrected sum of squares deined as (/ ) ( ) 1 1 2 n xx i x i n ? = i ? . The correction factor can also be written as nx 2 .

  • Correlation

    In the most general usage, a measure of the interdependence among data. The concept may include more than two variables. The term is most commonly used in a narrow sense to express the relationship between quantitative variables or ranks.

  • Covariance matrix

    A square matrix that contains the variances and covariances among a set of random variables, say, X1 , X X 2 k , , … . The main diagonal elements of the matrix are the variances of the random variables and the off-diagonal elements are the covariances between Xi and Xj . Also called the variance-covariance matrix. When the random variables are standardized to have unit variances, the covariance matrix becomes the correlation matrix.

  • Defect

    Used in statistical quality control, a defect is a particular type of nonconformance to speciications or requirements. Sometimes defects are classiied into types, such as appearance defects and functional defects.

  • Erlang random variable

    A continuous random variable that is the sum of a ixed number of independent, exponential random variables.

  • Error of estimation

    The difference between an estimated value and the true value.

  • Error sum of squares

    In analysis of variance, this is the portion of total variability that is due to the random component in the data. It is usually based on replication of observations at certain treatment combinations in the experiment. It is sometimes called the residual sum of squares, although this is really a better term to use only when the sum of squares is based on the remnants of a model-itting process and not on replication.

  • Exhaustive

    A property of a collection of events that indicates that their union equals the sample space.

  • False alarm

    A signal from a control chart when no assignable causes are present

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password