×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter Chapter 14: Confidence Intervals: The Basics

Full solutions for The Basic Practice of Statistics | 4th Edition

ISBN: 9780716774785

Solutions for Chapter Chapter 14: Confidence Intervals: The Basics

Solutions for Chapter Chapter 14
4 5 0 318 Reviews
12
0
Textbook: The Basic Practice of Statistics
Edition: 4
Author: David S. Moore
ISBN: 9780716774785

The Basic Practice of Statistics was written by and is associated to the ISBN: 9780716774785. Chapter Chapter 14: Confidence Intervals: The Basics includes 39 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: The Basic Practice of Statistics, edition: 4. Since 39 problems in chapter Chapter 14: Confidence Intervals: The Basics have been answered, more than 11073 students have viewed full step-by-step solutions from this chapter.

Key Statistics Terms and definitions covered in this textbook
  • 2 k p - factorial experiment

    A fractional factorial experiment with k factors tested in a 2 ? p fraction with all factors tested at only two levels (settings) each

  • Additivity property of x 2

    If two independent random variables X1 and X2 are distributed as chi-square with v1 and v2 degrees of freedom, respectively, Y = + X X 1 2 is a chi-square random variable with u = + v v 1 2 degrees of freedom. This generalizes to any number of independent chi-square random variables.

  • Asymptotic relative eficiency (ARE)

    Used to compare hypothesis tests. The ARE of one test relative to another is the limiting ratio of the sample sizes necessary to obtain identical error probabilities for the two procedures.

  • Attribute

    A qualitative characteristic of an item or unit, usually arising in quality control. For example, classifying production units as defective or nondefective results in attributes data.

  • Backward elimination

    A method of variable selection in regression that begins with all of the candidate regressor variables in the model and eliminates the insigniicant regressors one at a time until only signiicant regressors remain

  • Bias

    An effect that systematically distorts a statistical result or estimate, preventing it from representing the true quantity of interest.

  • Bivariate normal distribution

    The joint distribution of two normal random variables

  • Combination.

    A subset selected without replacement from a set used to determine the number of outcomes in events and sample spaces.

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Conidence interval

    If it is possible to write a probability statement of the form PL U ( ) ? ? ? ? = ?1 where L and U are functions of only the sample data and ? is a parameter, then the interval between L and U is called a conidence interval (or a 100 1( )% ? ? conidence interval). The interpretation is that a statement that the parameter ? lies in this interval will be true 100 1( )% ? ? of the times that such a statement is made

  • Continuity correction.

    A correction factor used to improve the approximation to binomial probabilities from a normal distribution.

  • Correlation matrix

    A square matrix that contains the correlations among a set of random variables, say, XX X 1 2 k , ,…, . The main diagonal elements of the matrix are unity and the off-diagonal elements rij are the correlations between Xi and Xj .

  • Defect

    Used in statistical quality control, a defect is a particular type of nonconformance to speciications or requirements. Sometimes defects are classiied into types, such as appearance defects and functional defects.

  • Deming

    W. Edwards Deming (1900–1993) was a leader in the use of statistical quality control.

  • Error mean square

    The error sum of squares divided by its number of degrees of freedom.

  • Error propagation

    An analysis of how the variance of the random variable that represents that output of a system depends on the variances of the inputs. A formula exists when the output is a linear function of the inputs and the formula is simpliied if the inputs are assumed to be independent.

  • Error variance

    The variance of an error term or component in a model.

  • Estimator (or point estimator)

    A procedure for producing an estimate of a parameter of interest. An estimator is usually a function of only sample data values, and when these data values are available, it results in an estimate of the parameter of interest.

  • Event

    A subset of a sample space.

  • F distribution.

    The distribution of the random variable deined as the ratio of two independent chi-square random variables, each divided by its number of degrees of freedom.

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password