Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 4.2: Experiments

Full solutions for The Practice of Statistics | 5th Edition

ISBN: 9781464108730

Solutions for Chapter 4.2: Experiments

Solutions for Chapter 4.2
4 5 0 405 Reviews
Textbook: The Practice of Statistics
Edition: 5
Author: Daren S. Starnes, Josh Tabor
ISBN: 9781464108730

Chapter 4.2: Experiments includes 52 full step-by-step solutions. Since 52 problems in chapter 4.2: Experiments have been answered, more than 6354 students have viewed full step-by-step solutions from this chapter. The Practice of Statistics was written by and is associated to the ISBN: 9781464108730. This textbook survival guide was created for the textbook: The Practice of Statistics, edition: 5. This expansive textbook survival guide covers the following chapters and their solutions.

Key Statistics Terms and definitions covered in this textbook
  • `-error (or `-risk)

    In hypothesis testing, an error incurred by rejecting a null hypothesis when it is actually true (also called a type I error).

  • Alias

    In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Arithmetic mean

    The arithmetic mean of a set of numbers x1 , x2 ,…, xn is their sum divided by the number of observations, or ( / )1 1 n xi t n ? = . The arithmetic mean is usually denoted by x , and is often called the average

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Conditional mean

    The mean of the conditional probability distribution of a random variable.

  • Conditional probability

    The probability of an event given that the random experiment produces an outcome in another event.

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Conidence interval

    If it is possible to write a probability statement of the form PL U ( ) ? ? ? ? = ?1 where L and U are functions of only the sample data and ? is a parameter, then the interval between L and U is called a conidence interval (or a 100 1( )% ? ? conidence interval). The interpretation is that a statement that the parameter ? lies in this interval will be true 100 1( )% ? ? of the times that such a statement is made

  • Continuous random variable.

    A random variable with an interval (either inite or ininite) of real numbers for its range.

  • Contour plot

    A two-dimensional graphic used for a bivariate probability density function that displays curves for which the probability density function is constant.

  • Covariance matrix

    A square matrix that contains the variances and covariances among a set of random variables, say, X1 , X X 2 k , , … . The main diagonal elements of the matrix are the variances of the random variables and the off-diagonal elements are the covariances between Xi and Xj . Also called the variance-covariance matrix. When the random variables are standardized to have unit variances, the covariance matrix becomes the correlation matrix.

  • Defects-per-unit control chart

    See U chart

  • Degrees of freedom.

    The number of independent comparisons that can be made among the elements of a sample. The term is analogous to the number of degrees of freedom for an object in a dynamic system, which is the number of independent coordinates required to determine the motion of the object.

  • Dependent variable

    The response variable in regression or a designed experiment.

  • Error sum of squares

    In analysis of variance, this is the portion of total variability that is due to the random component in the data. It is usually based on replication of observations at certain treatment combinations in the experiment. It is sometimes called the residual sum of squares, although this is really a better term to use only when the sum of squares is based on the remnants of a model-itting process and not on replication.

  • Estimator (or point estimator)

    A procedure for producing an estimate of a parameter of interest. An estimator is usually a function of only sample data values, and when these data values are available, it results in an estimate of the parameter of interest.

  • Expected value

    The expected value of a random variable X is its long-term average or mean value. In the continuous case, the expected value of X is E X xf x dx ( ) = ?? ( ) ? ? where f ( ) x is the density function of the random variable X.

  • Extra sum of squares method

    A method used in regression analysis to conduct a hypothesis test for the additional contribution of one or more variables to a model.

  • False alarm

    A signal from a control chart when no assignable causes are present

  • Harmonic mean

    The harmonic mean of a set of data values is the reciprocal of the arithmetic mean of the reciprocals of the data values; that is, h n x i n i = ? ? ? ? ? = ? ? 1 1 1 1 g .

Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
Reset your password