×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 2.5: Applied Statistics and Probability for Engineers 6th Edition

Applied Statistics and Probability for Engineers | 6th Edition | ISBN: 9781118539712 | Authors: Douglas C. Montgomery, George C. Runger

Full solutions for Applied Statistics and Probability for Engineers | 6th Edition

ISBN: 9781118539712

Applied Statistics and Probability for Engineers | 6th Edition | ISBN: 9781118539712 | Authors: Douglas C. Montgomery, George C. Runger

Solutions for Chapter 2.5

Solutions for Chapter 2.5
4 5 0 250 Reviews
25
1
Textbook: Applied Statistics and Probability for Engineers
Edition: 6
Author: Douglas C. Montgomery, George C. Runger
ISBN: 9781118539712

Chapter 2.5 includes 21 full step-by-step solutions. Applied Statistics and Probability for Engineers was written by and is associated to the ISBN: 9781118539712. This expansive textbook survival guide covers the following chapters and their solutions. Since 21 problems in chapter 2.5 have been answered, more than 103857 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Applied Statistics and Probability for Engineers , edition: 6.

Key Statistics Terms and definitions covered in this textbook
  • Analytic study

    A study in which a sample from a population is used to make inference to a future population. Stability needs to be assumed. See Enumerative study

  • Arithmetic mean

    The arithmetic mean of a set of numbers x1 , x2 ,…, xn is their sum divided by the number of observations, or ( / )1 1 n xi t n ? = . The arithmetic mean is usually denoted by x , and is often called the average

  • Attribute control chart

    Any control chart for a discrete random variable. See Variables control chart.

  • Bimodal distribution.

    A distribution with two modes

  • Causal variable

    When y fx = ( ) and y is considered to be caused by x, x is sometimes called a causal variable

  • Cause-and-effect diagram

    A chart used to organize the various potential causes of a problem. Also called a ishbone diagram.

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Continuity correction.

    A correction factor used to improve the approximation to binomial probabilities from a normal distribution.

  • Correlation coeficient

    A dimensionless measure of the linear association between two variables, usually lying in the interval from ?1 to +1, with zero indicating the absence of correlation (but not necessarily the independence of the two variables).

  • Correlation matrix

    A square matrix that contains the correlations among a set of random variables, say, XX X 1 2 k , ,…, . The main diagonal elements of the matrix are unity and the off-diagonal elements rij are the correlations between Xi and Xj .

  • Cumulative normal distribution function

    The cumulative distribution of the standard normal distribution, often denoted as ?( ) x and tabulated in Appendix Table II.

  • Density function

    Another name for a probability density function

  • Design matrix

    A matrix that provides the tests that are to be conducted in an experiment.

  • Discrete distribution

    A probability distribution for a discrete random variable

  • Expected value

    The expected value of a random variable X is its long-term average or mean value. In the continuous case, the expected value of X is E X xf x dx ( ) = ?? ( ) ? ? where f ( ) x is the density function of the random variable X.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Forward selection

    A method of variable selection in regression, where variables are inserted one at a time into the model until no other variables that contribute signiicantly to the model can be found.

  • Fraction defective

    In statistical quality control, that portion of a number of units or the output of a process that is defective.

  • Fractional factorial experiment

    A type of factorial experiment in which not all possible treatment combinations are run. This is usually done to reduce the size of an experiment with several factors.

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password