×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 4.10: Applied Statistics and Probability for Engineers 6th Edition

Applied Statistics and Probability for Engineers | 6th Edition | ISBN: 9781118539712 | Authors: Douglas C. Montgomery, George C. Runger

Full solutions for Applied Statistics and Probability for Engineers | 6th Edition

ISBN: 9781118539712

Applied Statistics and Probability for Engineers | 6th Edition | ISBN: 9781118539712 | Authors: Douglas C. Montgomery, George C. Runger

Solutions for Chapter 4.10

Solutions for Chapter 4.10
4 5 0 410 Reviews
20
4
Textbook: Applied Statistics and Probability for Engineers
Edition: 6
Author: Douglas C. Montgomery, George C. Runger
ISBN: 9781118539712

This expansive textbook survival guide covers the following chapters and their solutions. Applied Statistics and Probability for Engineers was written by and is associated to the ISBN: 9781118539712. Since 17 problems in chapter 4.10 have been answered, more than 149744 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Applied Statistics and Probability for Engineers , edition: 6. Chapter 4.10 includes 17 full step-by-step solutions.

Key Statistics Terms and definitions covered in this textbook
  • `-error (or `-risk)

    In hypothesis testing, an error incurred by rejecting a null hypothesis when it is actually true (also called a type I error).

  • Attribute control chart

    Any control chart for a discrete random variable. See Variables control chart.

  • Causal variable

    When y fx = ( ) and y is considered to be caused by x, x is sometimes called a causal variable

  • Central limit theorem

    The simplest form of the central limit theorem states that the sum of n independently distributed random variables will tend to be normally distributed as n becomes large. It is a necessary and suficient condition that none of the variances of the individual random variables are large in comparison to their sum. There are more general forms of the central theorem that allow ininite variances and correlated random variables, and there is a multivariate version of the theorem.

  • Chi-square (or chi-squared) random variable

    A continuous random variable that results from the sum of squares of independent standard normal random variables. It is a special case of a gamma random variable.

  • Comparative experiment

    An experiment in which the treatments (experimental conditions) that are to be studied are included in the experiment. The data from the experiment are used to evaluate the treatments.

  • Components of variance

    The individual components of the total variance that are attributable to speciic sources. This usually refers to the individual variance components arising from a random or mixed model analysis of variance.

  • Conditional probability distribution

    The distribution of a random variable given that the random experiment produces an outcome in an event. The given event might specify values for one or more other random variables

  • Conidence level

    Another term for the conidence coeficient.

  • Continuous uniform random variable

    A continuous random variable with range of a inite interval and a constant probability density function.

  • Degrees of freedom.

    The number of independent comparisons that can be made among the elements of a sample. The term is analogous to the number of degrees of freedom for an object in a dynamic system, which is the number of independent coordinates required to determine the motion of the object.

  • Discrete distribution

    A probability distribution for a discrete random variable

  • Dispersion

    The amount of variability exhibited by data

  • Distribution function

    Another name for a cumulative distribution function.

  • Error variance

    The variance of an error term or component in a model.

  • Expected value

    The expected value of a random variable X is its long-term average or mean value. In the continuous case, the expected value of X is E X xf x dx ( ) = ?? ( ) ? ? where f ( ) x is the density function of the random variable X.

  • Extra sum of squares method

    A method used in regression analysis to conduct a hypothesis test for the additional contribution of one or more variables to a model.

  • First-order model

    A model that contains only irstorder terms. For example, the irst-order response surface model in two variables is y xx = + ?? ? ? 0 11 2 2 + + . A irst-order model is also called a main effects model

  • Fractional factorial experiment

    A type of factorial experiment in which not all possible treatment combinations are run. This is usually done to reduce the size of an experiment with several factors.

  • Gamma function

    A function used in the probability density function of a gamma random variable that can be considered to extend factorials

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password