×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 5.4: Applied Statistics and Probability for Engineers 6th Edition

Applied Statistics and Probability for Engineers | 6th Edition | ISBN: 9781118539712 | Authors: Douglas C. Montgomery, George C. Runger

Full solutions for Applied Statistics and Probability for Engineers | 6th Edition

ISBN: 9781118539712

Applied Statistics and Probability for Engineers | 6th Edition | ISBN: 9781118539712 | Authors: Douglas C. Montgomery, George C. Runger

Solutions for Chapter 5.4

Solutions for Chapter 5.4
4 5 0 301 Reviews
11
3
Textbook: Applied Statistics and Probability for Engineers
Edition: 6
Author: Douglas C. Montgomery, George C. Runger
ISBN: 9781118539712

This expansive textbook survival guide covers the following chapters and their solutions. Since 17 problems in chapter 5.4 have been answered, more than 161783 students have viewed full step-by-step solutions from this chapter. Applied Statistics and Probability for Engineers was written by and is associated to the ISBN: 9781118539712. Chapter 5.4 includes 17 full step-by-step solutions. This textbook survival guide was created for the textbook: Applied Statistics and Probability for Engineers , edition: 6.

Key Statistics Terms and definitions covered in this textbook
  • `-error (or `-risk)

    In hypothesis testing, an error incurred by rejecting a null hypothesis when it is actually true (also called a type I error).

  • a-error (or a-risk)

    In hypothesis testing, an error incurred by failing to reject a null hypothesis when it is actually false (also called a type II error).

  • Asymptotic relative eficiency (ARE)

    Used to compare hypothesis tests. The ARE of one test relative to another is the limiting ratio of the sample sizes necessary to obtain identical error probabilities for the two procedures.

  • Bayes’ theorem

    An equation for a conditional probability such as PA B ( | ) in terms of the reverse conditional probability PB A ( | ).

  • Bias

    An effect that systematically distorts a statistical result or estimate, preventing it from representing the true quantity of interest.

  • Biased estimator

    Unbiased estimator.

  • C chart

    An attribute control chart that plots the total number of defects per unit in a subgroup. Similar to a defects-per-unit or U chart.

  • Categorical data

    Data consisting of counts or observations that can be classiied into categories. The categories may be descriptive.

  • Causal variable

    When y fx = ( ) and y is considered to be caused by x, x is sometimes called a causal variable

  • Center line

    A horizontal line on a control chart at the value that estimates the mean of the statistic plotted on the chart. See Control chart.

  • Confounding

    When a factorial experiment is run in blocks and the blocks are too small to contain a complete replicate of the experiment, one can run a fraction of the replicate in each block, but this results in losing information on some effects. These effects are linked with or confounded with the blocks. In general, when two factors are varied such that their individual effects cannot be determined separately, their effects are said to be confounded.

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Conidence interval

    If it is possible to write a probability statement of the form PL U ( ) ? ? ? ? = ?1 where L and U are functions of only the sample data and ? is a parameter, then the interval between L and U is called a conidence interval (or a 100 1( )% ? ? conidence interval). The interpretation is that a statement that the parameter ? lies in this interval will be true 100 1( )% ? ? of the times that such a statement is made

  • Correction factor

    A term used for the quantity ( / )( ) 1 1 2 n xi i n ? = that is subtracted from xi i n 2 ? =1 to give the corrected sum of squares deined as (/ ) ( ) 1 1 2 n xx i x i n ? = i ? . The correction factor can also be written as nx 2 .

  • Correlation

    In the most general usage, a measure of the interdependence among data. The concept may include more than two variables. The term is most commonly used in a narrow sense to express the relationship between quantitative variables or ranks.

  • Discrete distribution

    A probability distribution for a discrete random variable

  • Discrete random variable

    A random variable with a inite (or countably ininite) range.

  • Estimate (or point estimate)

    The numerical value of a point estimator.

  • Finite population correction factor

    A term in the formula for the variance of a hypergeometric random variable.

  • Hat matrix.

    In multiple regression, the matrix H XXX X = ( ) ? ? -1 . This a projection matrix that maps the vector of observed response values into a vector of itted values by yˆ = = X X X X y Hy ( ) ? ? ?1 .

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password