×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 7.3: Applied Statistics and Probability for Engineers 6th Edition

Applied Statistics and Probability for Engineers | 6th Edition | ISBN: 9781118539712 | Authors: Douglas C. Montgomery, George C. Runger

Full solutions for Applied Statistics and Probability for Engineers | 6th Edition

ISBN: 9781118539712

Applied Statistics and Probability for Engineers | 6th Edition | ISBN: 9781118539712 | Authors: Douglas C. Montgomery, George C. Runger

Solutions for Chapter 7.3

Solutions for Chapter 7.3
4 5 0 266 Reviews
24
1
Textbook: Applied Statistics and Probability for Engineers
Edition: 6
Author: Douglas C. Montgomery, George C. Runger
ISBN: 9781118539712

Since 22 problems in chapter 7.3 have been answered, more than 147887 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Applied Statistics and Probability for Engineers was written by and is associated to the ISBN: 9781118539712. This textbook survival guide was created for the textbook: Applied Statistics and Probability for Engineers , edition: 6. Chapter 7.3 includes 22 full step-by-step solutions.

Key Statistics Terms and definitions covered in this textbook
  • a-error (or a-risk)

    In hypothesis testing, an error incurred by failing to reject a null hypothesis when it is actually false (also called a type II error).

  • Assignable cause

    The portion of the variability in a set of observations that can be traced to speciic causes, such as operators, materials, or equipment. Also called a special cause.

  • Attribute

    A qualitative characteristic of an item or unit, usually arising in quality control. For example, classifying production units as defective or nondefective results in attributes data.

  • Backward elimination

    A method of variable selection in regression that begins with all of the candidate regressor variables in the model and eliminates the insigniicant regressors one at a time until only signiicant regressors remain

  • Causal variable

    When y fx = ( ) and y is considered to be caused by x, x is sometimes called a causal variable

  • Cause-and-effect diagram

    A chart used to organize the various potential causes of a problem. Also called a ishbone diagram.

  • Components of variance

    The individual components of the total variance that are attributable to speciic sources. This usually refers to the individual variance components arising from a random or mixed model analysis of variance.

  • Conditional probability mass function

    The probability mass function of the conditional probability distribution of a discrete random variable.

  • Correlation coeficient

    A dimensionless measure of the linear association between two variables, usually lying in the interval from ?1 to +1, with zero indicating the absence of correlation (but not necessarily the independence of the two variables).

  • Cumulative sum control chart (CUSUM)

    A control chart in which the point plotted at time t is the sum of the measured deviations from target for all statistics up to time t

  • Decision interval

    A parameter in a tabular CUSUM algorithm that is determined from a trade-off between false alarms and the detection of assignable causes.

  • Defect

    Used in statistical quality control, a defect is a particular type of nonconformance to speciications or requirements. Sometimes defects are classiied into types, such as appearance defects and functional defects.

  • Defects-per-unit control chart

    See U chart

  • Error variance

    The variance of an error term or component in a model.

  • Estimate (or point estimate)

    The numerical value of a point estimator.

  • Extra sum of squares method

    A method used in regression analysis to conduct a hypothesis test for the additional contribution of one or more variables to a model.

  • F-test

    Any test of signiicance involving the F distribution. The most common F-tests are (1) testing hypotheses about the variances or standard deviations of two independent normal distributions, (2) testing hypotheses about treatment means or variance components in the analysis of variance, and (3) testing signiicance of regression or tests on subsets of parameters in a regression model.

  • Gamma function

    A function used in the probability density function of a gamma random variable that can be considered to extend factorials

  • Geometric mean.

    The geometric mean of a set of n positive data values is the nth root of the product of the data values; that is, g x i n i n = ( ) = / w 1 1 .

  • Hat matrix.

    In multiple regression, the matrix H XXX X = ( ) ? ? -1 . This a projection matrix that maps the vector of observed response values into a vector of itted values by yˆ = = X X X X y Hy ( ) ? ? ?1 .

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password