×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 9.2: Applied Statistics and Probability for Engineers 6th Edition

Applied Statistics and Probability for Engineers | 6th Edition | ISBN: 9781118539712 | Authors: Douglas C. Montgomery, George C. Runger

Full solutions for Applied Statistics and Probability for Engineers | 6th Edition

ISBN: 9781118539712

Applied Statistics and Probability for Engineers | 6th Edition | ISBN: 9781118539712 | Authors: Douglas C. Montgomery, George C. Runger

Solutions for Chapter 9.2

Solutions for Chapter 9.2
4 5 0 424 Reviews
24
2
Textbook: Applied Statistics and Probability for Engineers
Edition: 6
Author: Douglas C. Montgomery, George C. Runger
ISBN: 9781118539712

Applied Statistics and Probability for Engineers was written by and is associated to the ISBN: 9781118539712. This textbook survival guide was created for the textbook: Applied Statistics and Probability for Engineers , edition: 6. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 9.2 includes 21 full step-by-step solutions. Since 21 problems in chapter 9.2 have been answered, more than 339230 students have viewed full step-by-step solutions from this chapter.

Key Statistics Terms and definitions covered in this textbook
  • Alias

    In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Asymptotic relative eficiency (ARE)

    Used to compare hypothesis tests. The ARE of one test relative to another is the limiting ratio of the sample sizes necessary to obtain identical error probabilities for the two procedures.

  • Axioms of probability

    A set of rules that probabilities deined on a sample space must follow. See Probability

  • Bayes’ estimator

    An estimator for a parameter obtained from a Bayesian method that uses a prior distribution for the parameter along with the conditional distribution of the data given the parameter to obtain the posterior distribution of the parameter. The estimator is obtained from the posterior distribution.

  • Bivariate distribution

    The joint probability distribution of two random variables.

  • Box plot (or box and whisker plot)

    A graphical display of data in which the box contains the middle 50% of the data (the interquartile range) with the median dividing it, and the whiskers extend to the smallest and largest values (or some deined lower and upper limits).

  • C chart

    An attribute control chart that plots the total number of defects per unit in a subgroup. Similar to a defects-per-unit or U chart.

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Components of variance

    The individual components of the total variance that are attributable to speciic sources. This usually refers to the individual variance components arising from a random or mixed model analysis of variance.

  • Conditional probability distribution

    The distribution of a random variable given that the random experiment produces an outcome in an event. The given event might specify values for one or more other random variables

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Control limits

    See Control chart.

  • Correction factor

    A term used for the quantity ( / )( ) 1 1 2 n xi i n ? = that is subtracted from xi i n 2 ? =1 to give the corrected sum of squares deined as (/ ) ( ) 1 1 2 n xx i x i n ? = i ? . The correction factor can also be written as nx 2 .

  • Cumulative distribution function

    For a random variable X, the function of X deined as PX x ( ) ? that is used to specify the probability distribution.

  • Decision interval

    A parameter in a tabular CUSUM algorithm that is determined from a trade-off between false alarms and the detection of assignable causes.

  • Distribution free method(s)

    Any method of inference (hypothesis testing or conidence interval construction) that does not depend on the form of the underlying distribution of the observations. Sometimes called nonparametric method(s).

  • Distribution function

    Another name for a cumulative distribution function.

  • Enumerative study

    A study in which a sample from a population is used to make inference to the population. See Analytic study

  • Estimator (or point estimator)

    A procedure for producing an estimate of a parameter of interest. An estimator is usually a function of only sample data values, and when these data values are available, it results in an estimate of the parameter of interest.

  • Gamma random variable

    A random variable that generalizes an Erlang random variable to noninteger values of the parameter r