×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 1.3: SIMPLE RANDOM SAMPLING

Statistics: Informed Decisions Using Data | 4th Edition | ISBN: 9780321757272 | Authors: Michael Sullivan, III

Full solutions for Statistics: Informed Decisions Using Data | 4th Edition

ISBN: 9780321757272

Statistics: Informed Decisions Using Data | 4th Edition | ISBN: 9780321757272 | Authors: Michael Sullivan, III

Solutions for Chapter 1.3: SIMPLE RANDOM SAMPLING

Solutions for Chapter 1.3
4 5 0 314 Reviews
14
4
Textbook: Statistics: Informed Decisions Using Data
Edition: 4
Author: Michael Sullivan, III
ISBN: 9780321757272

Chapter 1.3: SIMPLE RANDOM SAMPLING includes 32 full step-by-step solutions. Since 32 problems in chapter 1.3: SIMPLE RANDOM SAMPLING have been answered, more than 140817 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Statistics: Informed Decisions Using Data was written by and is associated to the ISBN: 9780321757272. This textbook survival guide was created for the textbook: Statistics: Informed Decisions Using Data , edition: 4.

Key Statistics Terms and definitions covered in this textbook
  • Analytic study

    A study in which a sample from a population is used to make inference to a future population. Stability needs to be assumed. See Enumerative study

  • Bayes’ theorem

    An equation for a conditional probability such as PA B ( | ) in terms of the reverse conditional probability PB A ( | ).

  • Biased estimator

    Unbiased estimator.

  • Chi-square (or chi-squared) random variable

    A continuous random variable that results from the sum of squares of independent standard normal random variables. It is a special case of a gamma random variable.

  • Conditional probability density function

    The probability density function of the conditional probability distribution of a continuous random variable.

  • Conditional probability distribution

    The distribution of a random variable given that the random experiment produces an outcome in an event. The given event might specify values for one or more other random variables

  • Conditional probability mass function

    The probability mass function of the conditional probability distribution of a discrete random variable.

  • Confounding

    When a factorial experiment is run in blocks and the blocks are too small to contain a complete replicate of the experiment, one can run a fraction of the replicate in each block, but this results in losing information on some effects. These effects are linked with or confounded with the blocks. In general, when two factors are varied such that their individual effects cannot be determined separately, their effects are said to be confounded.

  • Conidence coeficient

    The probability 1?a associated with a conidence interval expressing the probability that the stated interval will contain the true parameter value.

  • Conidence interval

    If it is possible to write a probability statement of the form PL U ( ) ? ? ? ? = ?1 where L and U are functions of only the sample data and ? is a parameter, then the interval between L and U is called a conidence interval (or a 100 1( )% ? ? conidence interval). The interpretation is that a statement that the parameter ? lies in this interval will be true 100 1( )% ? ? of the times that such a statement is made

  • Continuity correction.

    A correction factor used to improve the approximation to binomial probabilities from a normal distribution.

  • Contrast

    A linear function of treatment means with coeficients that total zero. A contrast is a summary of treatment means that is of interest in an experiment.

  • Correction factor

    A term used for the quantity ( / )( ) 1 1 2 n xi i n ? = that is subtracted from xi i n 2 ? =1 to give the corrected sum of squares deined as (/ ) ( ) 1 1 2 n xx i x i n ? = i ? . The correction factor can also be written as nx 2 .

  • Decision interval

    A parameter in a tabular CUSUM algorithm that is determined from a trade-off between false alarms and the detection of assignable causes.

  • Deming

    W. Edwards Deming (1900–1993) was a leader in the use of statistical quality control.

  • Discrete random variable

    A random variable with a inite (or countably ininite) range.

  • Discrete uniform random variable

    A discrete random variable with a inite range and constant probability mass function.

  • Error variance

    The variance of an error term or component in a model.

  • Event

    A subset of a sample space.

  • Harmonic mean

    The harmonic mean of a set of data values is the reciprocal of the arithmetic mean of the reciprocals of the data values; that is, h n x i n i = ? ? ? ? ? = ? ? 1 1 1 1 g .

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password