×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 2.2: ORGANIZING QUANTITATIVE DATA: THE POPULAR DISPLAYS

Statistics: Informed Decisions Using Data | 4th Edition | ISBN: 9780321757272 | Authors: Michael Sullivan, III

Full solutions for Statistics: Informed Decisions Using Data | 4th Edition

ISBN: 9780321757272

Statistics: Informed Decisions Using Data | 4th Edition | ISBN: 9780321757272 | Authors: Michael Sullivan, III

Solutions for Chapter 2.2: ORGANIZING QUANTITATIVE DATA: THE POPULAR DISPLAYS

Solutions for Chapter 2.2
4 5 0 339 Reviews
31
3
Textbook: Statistics: Informed Decisions Using Data
Edition: 4
Author: Michael Sullivan, III
ISBN: 9780321757272

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 2.2: ORGANIZING QUANTITATIVE DATA: THE POPULAR DISPLAYS includes 116 full step-by-step solutions. Statistics: Informed Decisions Using Data was written by and is associated to the ISBN: 9780321757272. This textbook survival guide was created for the textbook: Statistics: Informed Decisions Using Data , edition: 4. Since 116 problems in chapter 2.2: ORGANIZING QUANTITATIVE DATA: THE POPULAR DISPLAYS have been answered, more than 161763 students have viewed full step-by-step solutions from this chapter.

Key Statistics Terms and definitions covered in this textbook
  • Adjusted R 2

    A variation of the R 2 statistic that compensates for the number of parameters in a regression model. Essentially, the adjustment is a penalty for increasing the number of parameters in the model. Alias. In a fractional factorial experiment when certain factor effects cannot be estimated uniquely, they are said to be aliased.

  • Alternative hypothesis

    In statistical hypothesis testing, this is a hypothesis other than the one that is being tested. The alternative hypothesis contains feasible conditions, whereas the null hypothesis speciies conditions that are under test

  • Average

    See Arithmetic mean.

  • Central limit theorem

    The simplest form of the central limit theorem states that the sum of n independently distributed random variables will tend to be normally distributed as n becomes large. It is a necessary and suficient condition that none of the variances of the individual random variables are large in comparison to their sum. There are more general forms of the central theorem that allow ininite variances and correlated random variables, and there is a multivariate version of the theorem.

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Contingency table.

    A tabular arrangement expressing the assignment of members of a data set according to two or more categories or classiication criteria

  • Continuous distribution

    A probability distribution for a continuous random variable.

  • Continuous uniform random variable

    A continuous random variable with range of a inite interval and a constant probability density function.

  • Contrast

    A linear function of treatment means with coeficients that total zero. A contrast is a summary of treatment means that is of interest in an experiment.

  • Convolution

    A method to derive the probability density function of the sum of two independent random variables from an integral (or sum) of probability density (or mass) functions.

  • Covariance

    A measure of association between two random variables obtained as the expected value of the product of the two random variables around their means; that is, Cov(X Y, ) [( )( )] =? ? E X Y ? ? X Y .

  • Degrees of freedom.

    The number of independent comparisons that can be made among the elements of a sample. The term is analogous to the number of degrees of freedom for an object in a dynamic system, which is the number of independent coordinates required to determine the motion of the object.

  • Discrete uniform random variable

    A discrete random variable with a inite range and constant probability mass function.

  • Error of estimation

    The difference between an estimated value and the true value.

  • Expected value

    The expected value of a random variable X is its long-term average or mean value. In the continuous case, the expected value of X is E X xf x dx ( ) = ?? ( ) ? ? where f ( ) x is the density function of the random variable X.

  • F-test

    Any test of signiicance involving the F distribution. The most common F-tests are (1) testing hypotheses about the variances or standard deviations of two independent normal distributions, (2) testing hypotheses about treatment means or variance components in the analysis of variance, and (3) testing signiicance of regression or tests on subsets of parameters in a regression model.

  • Factorial experiment

    A type of experimental design in which every level of one factor is tested in combination with every level of another factor. In general, in a factorial experiment, all possible combinations of factor levels are tested.

  • Goodness of fit

    In general, the agreement of a set of observed values and a set of theoretical values that depend on some hypothesis. The term is often used in itting a theoretical distribution to a set of observations.

  • Harmonic mean

    The harmonic mean of a set of data values is the reciprocal of the arithmetic mean of the reciprocals of the data values; that is, h n x i n i = ? ? ? ? ? = ? ? 1 1 1 1 g .

  • Hat matrix.

    In multiple regression, the matrix H XXX X = ( ) ? ? -1 . This a projection matrix that maps the vector of observed response values into a vector of itted values by yˆ = = X X X X y Hy ( ) ? ? ?1 .

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password