In Exercises 5 through 40, find the matrix of the given linear transformation T with respect to the given basis. If no basis is specified, use the standard basis: 91 = (1, f, t2) for P2,T (fit)) = /( l) + /'(l)(r-l)fro m P 2 to P2.Interpret transformation T geometrically.

qt /,x LI , t 0 t'c/ar,fu ,,,,t^€) &-xt QLv Q: \ r\ L\j"X -\ t,I \ .J J''l X \,t:a(XJ -2 a{ ts iJ xt -- + x {C,rl N',- 3 ^ ^ t'"(;'&A,'eu3r\ { , a,,J J-{''"{f 6) x' - x ' l.)C* ll f*c{) l}e /'a 1fi= c Lye (/\*=+(Cr)'u u, --k("r--r )c *)'t( z "{ lo ..jj' hC[*/ ,[CJ- C'*U,mD 'l t1": LrDtr'uto)o C) +-C*O Ue F, L-ICfu U z (* -. \^' t \qi*1it