For the following exercises, use a graphing utility to graph the curve represented by the parametric equations and identify the curve from its equation.

[T] \(\begin{array}{l}x=t-0.5 \sin t \\y=1-1.5 \cos t\end{array}\)

Text Transcription:

x = t - 0.5 sin t over y = 1 - 1.5 cos t

4/4/16 EXAMAPRIL14 th Ø 4/12NickTreichishostingareviewsession@415pminFulmer125 Ø 4/12Finneganishostingareviewsessioninthepit@7 Ø 4/11@515theChemclubishostingareviewsession AXE • • n=thenumberofbondinggroupsonthecentralatom • m=thenumberoflonepairsonthecentralatom • ANYtypeofbond(single,double,triple)isonebondinggroup • n+m=thenumberofelectrongroupsonthecentralatom ElectronGeometry • Thenumberofelectrongroupsdeterminesthis • Thereareonly5,seetable10.1 • Determinestheidealbondangles-elementstryandarrangethemselvesasfar awayfromeachotheraspossiblebecausetheelectronsrepulsethemselves MolecularGeometry(shape)-electrongeometryandthenumberoflonepairs determinethemoleculargeometry • Themolecularshape,thebonpolarities,andtheformalchargedistribution determinethemolecularpolarity 4/6/16 BondAngles • ElectronGeometrydeterminestheidealbondangles(theyareapproximate) Linear:180degreeangles Triganolplanar:120degreeangles Tetrahedral:109.5degreeangles Trigonalbipyramidal:90,120degreeangles Octahedral:90degreeangles • Lonepairstakeupmorespacethanbondingpairs • Doublebondstakeupmorespacethanasinglebonds