Archimedes' quadrature of the parabola The Greeks solved

Chapter 11, Problem 61E

(choose chapter or problem)

Archimedes' quadrature of the parabola The Greeks solved several calculus problems almost 2000 years before the discovery of calculus. One example is Archimedes' calculation of the area of the region R bounded by a segment of a parabola, which he did using the “method of exhaustion.” As shown in the figure, the idea was to fill R with an infinite sequence of triangles. Archimedes began with one triangle inscribed in the parabola, with area \(A_{1}\), and proceeded in stages, with the number of new triangles doubling at each stage. He was able to show (the key to the solution) that at each stage, the area of a new triangle is \(\frac{1}{8}\) of the area of a triangle at the previous stage; for example, \(A_{2}=\frac{1}{8} A_{1}\), and so forth. Show, as Archimedes did, that the area of R is \(\frac{4}{3}\) times the area of \(A_{1}\).

             

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back