How much total energy is stored in the lake in Problem? As

Chapter 7, Problem 80P

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

Problem 80P

How much total energy is stored in the lake in Problem? As in that problem, take the gravitational potential energy to be zero at the base of the dam. Express your answer in joules and in kilowatt-hours. (Hint: Break the lake up into infinitesimal horizontal layers of thickness dy, and integrate to find the total potential energy.)

Problem:

A hydroelectric dam holds back a lake of surface area 3.0 × 106 m2 that has vertical sides below the water level. The water level in the lake is 150 m above the base of the dam. When the water passes through turbines at the base of the dam, its mechanical energy is converted to electrical energy with 90% efficiency. (a) lf gravitational potential energy is taken to be zero at the base of the dam, how much energy is stored in the top meter of the water in the lake? The density of water is 1000 kg/m3. (b) What volume of water must pass through the dam to produce 1000 kilowatt-hours of electrical energy? What distance does the level of water in the lake fall when this much water passes through the dam?

Questions & Answers

QUESTION:

Problem 80P

How much total energy is stored in the lake in Problem? As in that problem, take the gravitational potential energy to be zero at the base of the dam. Express your answer in joules and in kilowatt-hours. (Hint: Break the lake up into infinitesimal horizontal layers of thickness dy, and integrate to find the total potential energy.)

Problem:

A hydroelectric dam holds back a lake of surface area 3.0 × 106 m2 that has vertical sides below the water level. The water level in the lake is 150 m above the base of the dam. When the water passes through turbines at the base of the dam, its mechanical energy is converted to electrical energy with 90% efficiency. (a) lf gravitational potential energy is taken to be zero at the base of the dam, how much energy is stored in the top meter of the water in the lake? The density of water is 1000 kg/m3. (b) What volume of water must pass through the dam to produce 1000 kilowatt-hours of electrical energy? What distance does the level of water in the lake fall when this much water passes through the dam?

ANSWER:

Solution  80P

Step 1:

We have

Height

Density

Thus we have

Volume

        

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back