Solution Found!

Solved: Consider the steady, incompressible,

Chapter 4, Problem 67P

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

Problem 67P

Consider the steady, incompressible, two-dimensional flow field of  Prob. 4‒69. Using the results of Prob. 4‒69(a). do the following:

(a) From the fundamental definition of   shear strain rate (half of the rate of decrease of the angle between two initially perpendicular lines that intersect at a point), calculate shear strain rate εxy  in the xy-plane.(Hint: Use the lower edge and the left edge of the fluid particle, which intersect at 90° at the lower-left corner of the particle at the initial time.)

(b) Compare your results with those obtained from the equation for Ɛxy  in Cartesian coordinates, i.e.,

PROBLEM: Consider steady, incompressible, two-dimensional shear flow for which the velocity field iswhere a and b are constants. Sketched in Fig. P4‒69 is a small rectangular fluid particle of dimensions dx and dy at time t. The fluid particle moves and deforms with the flow such that at a later time (t + dt). the particle is no longer rectangular, as also shown in the figure. The initial location of each corner of the fluid particle is labeled in Fig. P4‒69. The lower-left corner is at (x. y) at time t. where the x-component of  velocity is u = a + by. At the later time, this corner moves to (x + u dt, y), or

(a) In similar fashion, calculate the location of each of the other three corners of the fluid particle at time t ‒ dt.

(b) From the fundamental definition of   linear strain rate (the rate of increase in length per unit length). calculate linear strain rates Ɛxx and Ɛyy.

(c) Compare your results with those obtained from the equations for Ɛxx and Ɛyy in Cartesian coordinates, i.e..

FIGURE P4‒69

Questions & Answers

QUESTION:

Problem 67P

Consider the steady, incompressible, two-dimensional flow field of  Prob. 4‒69. Using the results of Prob. 4‒69(a). do the following:

(a) From the fundamental definition of   shear strain rate (half of the rate of decrease of the angle between two initially perpendicular lines that intersect at a point), calculate shear strain rate εxy  in the xy-plane.(Hint: Use the lower edge and the left edge of the fluid particle, which intersect at 90° at the lower-left corner of the particle at the initial time.)

(b) Compare your results with those obtained from the equation for Ɛxy  in Cartesian coordinates, i.e.,

PROBLEM: Consider steady, incompressible, two-dimensional shear flow for which the velocity field iswhere a and b are constants. Sketched in Fig. P4‒69 is a small rectangular fluid particle of dimensions dx and dy at time t. The fluid particle moves and deforms with the flow such that at a later time (t + dt). the particle is no longer rectangular, as also shown in the figure. The initial location of each corner of the fluid particle is labeled in Fig. P4‒69. The lower-left corner is at (x. y) at time t. where the x-component of  velocity is u = a + by. At the later time, this corner moves to (x + u dt, y), or

(a) In similar fashion, calculate the location of each of the other three corners of the fluid particle at time t ‒ dt.

(b) From the fundamental definition of   linear strain rate (the rate of increase in length per unit length). calculate linear strain rates Ɛxx and Ɛyy.

(c) Compare your results with those obtained from the equations for Ɛxx and Ɛyy in Cartesian coordinates, i.e..

FIGURE P4‒69

ANSWER:

Step 1

We have to first calculate the shear strain using the fundamental definition of shear strain rate from the fundamental definition.

Then we have to compare the result we obtained using the equation

\epsilon_{xy}%3D\frac{1}{2}\left(\frac{\partial u}{\partial y}%2B\frac{\partial v}{\partial x}\right)

Part (a)

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back