×
Get Full Access to Fluid Mechanics - 2 Edition - Chapter 4 - Problem 69p
Get Full Access to Fluid Mechanics - 2 Edition - Chapter 4 - Problem 69p

×

# From the results of Prob. 4?72,(a) Is this flow rotational

ISBN: 9780071284219 39

## Solution for problem 69P Chapter 4

Fluid Mechanics | 2nd Edition

• Textbook Solutions
• 2901 Step-by-step solutions solved by professors and subject experts
• Get 24/7 help from StudySoup virtual teaching assistants

Fluid Mechanics | 2nd Edition

4 5 1 419 Reviews
26
1
Problem 69P

Problem 69P

From the results of Prob. 4‒72,

(a) Is this flow rotational or irrotational?

(b) Calculate the z-component of vorticity for this flow field.

PROBLEM: Consider the steady, incompressible, two-dimensional flow field of Prob. 4‒69. Using the results of Prob. 4‒69(a), do the following:

(a) From the fundamental definition of the rate of rotation (average rotation rate of two initially perpendicular lines that intersect at a point), calculate the rate of rotation of the fluid particle in the xy-plane.ωz (Hint: Use the lower edge and the left edge of the fluid particle, which intersect at 90° at the lower-left corner of the particle at the initial time.)

(b) Compare your results with those obtained from the equation for ωz. in Cartesian coordinates, i.e..

PROBLEM: Consider steady, incompressible, two-dimensional shear flow for which the velocity field iswhere a and b are constants. Sketched in Fig. P4‒69 is a small rectangular fluid particle of dimensions dx and dy at time t. The fluid particle moves and deforms with the flow such that at a later time (t + dt). the particle is no longer rectangular, as also shown in the figure. The initial location of each corner of the fluid particle is labeled in Fig. P4‒69. The lower-left corner is at (x. y) at time t. where the x-component of  velocity is u = a + by. At the later time, this corner moves to (x + u dt, y), or

(a) In similar fashion, calculate the location of each of the other three corners of the fluid particle at time t ‒ dt.

(b) From the fundamental definition of   linear strain rate (the rate of increase in length per unit length). calculate linear strain rates Ɛxx and Ɛyy.

(c) Compare your results with those obtained from the equations for Ɛxx and Ɛyy in Cartesian coordinates, i.e..

FIGURE P4‒69

Step-by-Step Solution:

Step 1 of 3

We have to determine whether the flow in rotating or not and then we have to find out the vorticity of the flow.

Part (a)

Step 2 of 3

Step 3 of 3

#### Related chapters

Unlock Textbook Solution