×
Get Full Access to Fundamentals Of Engineering Thermodynamics - 8 Edition - Chapter 7 - Problem 7.55
Get Full Access to Fundamentals Of Engineering Thermodynamics - 8 Edition - Chapter 7 - Problem 7.55

×

# Water vapor enters a valve with a mass flow rate of 2 kg/s

ISBN: 9781118412930 139

## Solution for problem 7.55 Chapter 7

Fundamentals of Engineering Thermodynamics | 8th Edition

• Textbook Solutions
• 2901 Step-by-step solutions solved by professors and subject experts
• Get 24/7 help from StudySoup virtual teaching assistants

Fundamentals of Engineering Thermodynamics | 8th Edition

4 5 1 359 Reviews
26
0
Problem 7.55

Water vapor enters a valve with a mass flow rate of 2 kg/s at a temperature of 3208C and a pressure of 60 bar and undergoes a throttling process to 40 bar. (a) Determine the flow exergy rates at the valve inlet and exit and the rate of exergy destruction, each in kW. (b) Evaluating exergy at 8.5 cents per kW ? h, determine the annual cost, in \$/year, associated with the exergy destruction, assuming 8400 hours of operation annually. Let T0 5 258C, p0 5 1 bar.

Step-by-Step Solution:
Step 1 of 3

Midterm Study Guide #3 ' ' 21=1 K.090.09 0 oy ioxgz Rytx y -2 k¥ 21=2 0 0 081 ; ×=0y)y=o y0t 0 =§p×,y#y , 0.01 0.18 edpxtdxefdhffotio 10.110.040.81 Given 0'foo9 21=221=10 O 0.81 0.81 .IEIofdoiY snEo px.ycx.gl P4#={YiliYET pyly 1- Fin: 0.o; y=. ¥¥ ;ow ,EHtEtp =§P#Ky) mPMFinal P qkntpylgh ) -2 k¥ E(D= 0*0.0-11*0.18+2*0 Bx=o y=oy㱺 y 0.01=1 xjtoo0.1/0.0910-81 :# 0.81 0.81 Pyly T Ely)=0*0.1+1*0.-12*0.8Pxytx ,y)y=oyit :0.1/0.0910-81 =1.71=0.09+1.62 y.tk#x:# 0.81 0.81 Pyly T ex Fi(w) ,where W=×y %={ 0,44 } ' ECWKEGY ) Bycx,y)y=o㱺y=z ¥÷s*¥*x . www.theikdWYYE8oBEhEF=o*#I*o.oa+e*o.aw=X+ay 0 ; &W . 0.09+3.24=3.33 fnway±} - it'sless work wayzwMuwȼwethis technique ) evaluatethe functiofereverypossikkxoy , make E{9(×,y)}=§§g(x,yjp(×=x,y=y Matri,tpoihtwisemultiplication ' xl 0 I 2 × 't0 I 2 o 0 * 0 I 0 I 2 10.090.09 - EK ) 0010 2 4 21 00=>01*0081)+(4*0.81) 3.33 - ,y = ELW) Ecxy ) PMF joint onlyfortineas ex)Given : Learned : NEK Px ,y(x,y)=PK=X ,y=y) Find: ypx.to#taPxJxdy IF Fi aEule nowmebtionhebtiaship Pylyl ,ELy)=µy,Jy whenfo ,y)±EEC*D=iex,µx)(y-µD}}ch5h.314 HECXPrk .mx# formal definition lsnathexpoession g) Given: ilinldatio:ph tat iv doesn't x'sdirection y=axtb change Fin: - a=Y oppositeirections µ ,Jy ,wvkiyhpxy # X @cov(x,y)=e{(x-µ×)(y-µy )} axtb - -b) } =E{(*µ×)( aµx @ECy)=µy=aµ×tbf =E{(×-µ×X*µx)a} - aagnnocgrcoktih bOVar4Hj2y-azjx2-aEECxfuxY3-Jy-1afjfeuarisalways-a@a-opositirelsigndependsonat.aTsnowmebtichOpx.gogytxH.gITEsEfEpssFTiteoEuyawmjxt.Yna.EafYtdnttEijafdy-2dxfxY-grxXgjDgfzzcor-dx2y-2xt22x2y-Z2xz-ZJjwstusethisequationdiredlypx.y-lsY-axtb.aDiv-dx2yccovCx.ykdxdypx.y µ -h'4㱺ˠwunYneY¥hnww on +lE6y×s×gDn±H independent tlhvariannormalized byslandardeviation pt correlation tfpxyatl Correlation EGPEO coefficient orthogonal ex) Given : Xi .. ,Xnareiid㱺f× .f×n(X ,xn ) , ; . Efx ,(×fq( xD .. .fxnK) Etfxfx ,)fxfk) .. .fxKn ) Find :P(Xn=ma×(x , ,xnDttnbstRv ,, P(Xn=minlK÷Ynȼ .. , p(Xn=max(x .,xnD ,, ¥ .ae#9oE....IonfoonfxtxDfxkd...fx(Xn-DfxCxn).x.dxz...dxn+dxn =L :( fxonofxlxm ,dxn+ ) . fxonofxlxddxz )( fhoofxlx , )d×)*f×(xn)dxn :( ) . F×lH=gP•f×(u)du=f9oEKn .tn#fxKnldxn=f9fFxcxDmfxCxn)dx.FhYTntt X ddE¥n1=fx(Xn)㱺dy=fxCxn)dxn ×nȾoo xn - too =fymdy=Info=# .am#,a..s=Etotos=*aj Foti ex)Given Ex 4 91) ,y)={2x;0IfIE㱺 h-*ȼy±xz o ;ow . y=x2 y=xz Find : . '× X=ry x±Ff Html a)C= ¥ I 'it i b)fx(x),fy\$ # aretheyirdeps.ho.becauseydeplndsonxinlyIExsndcovCx.yKOjHEGsymmety1DfxCxtffx.yCx.yjdyc-fyff-fry2xdx-X2lK-l-fuhenOEyLDIIIxIdjt.a.uxufetstIta2xdxax4ILttiihEHsHtsilwhmtsgtggPwauap.aqxjgooIegfttsEtEt5ooEjEY.EotBttIa.y.a.scECxkfjxtt4x3dx-4foxdx-4sXsfo-41sk9DElyHf9ooyfyly1dyoY-EiylHy1dytfloylty1dyshsx.OtrianglePDFissymmetncaound01covCx.yKFk.y2s-EWECyXo4ts-Ek.y1xtyarenotindependeutbecause4x3CktyHF2xEEgCx.yB-SxfygCx.yHx.yCX.y1dxdy-ffxyCzxdydx-2fjxyj@dx-xE2aydy-yEfxy-tzska5-fx2IB-tzszxa-x93-0-72fox2Bydydx-O-covCx.yfindependenceIsMhlYx.y ) . butcovk indep ,y)=O# ^ As ) (3,5) ex)Giren: was - Pcmaxlxykd 's dawarea =L ,y)={ okgjfjEF of interest yw QW=min{ ×,...n3 =L PK , >w,Xz>w ,..,×n>w) Find: El -PCx,>w)* . .*P(xn>w ) FWW )&fw( w) =L-( tFxCwD* ...*(tF×n(WD Dense P(w>w #lttFxo..*(tFqwD subscriponx's a ' nowthesame P(Xn=Max(× ,...×n))=tn thing Fwlwfl dw fewI#xCwDnH w) )=n(tF×(wDmfx(w)f( Sample exam problems fxytxiy) texypeyjoindependent =( #2) Given: Random variablesX and 'have the PMF know :{ )-1 joint Epxycx,y fxCx7f9oofxylxifdyHDGiven.fylyHf0o0ofx.yCx.ydxRandomvaniablesXandYhavethejointCDFCtexXtett.yxE0oFxyKPszo.o.w.Findip1ugin2d3fo@aHxxe2.Yc3PFjgjyljf3HEktetFx.yCx.y-PCxLX.YfylbsFxcx.tayExsYhoEiiex-EEsoIeFEEEffyYt3tldk9deiF.TtdFylyIFx.y6o.y ,y(x,y7={ 0 ;ow . Pycyhsxpxiykyl )=teh={'€¥g EW=§xPxW a) Whetisthevalueytheconstantc Varlx)=EA2tE4D=f×2 yn 㱺 # , P(×=l)-4/28 EC×Y=EX2PxlD , ••kc Ⱦ IIF¥I⾨*¥#g*¥±a*'*EkstI¥D % P(Y=D -7/28 .- .co.4c Ⱦ 7128 PGH ,y=h=PkeDP(y=D=%s*s5=Yzg 1 , [ 4 >X 9 ) becauseheconditiyxincxy doesn't g pyly whoepegdedependontkconditionofy PxD= - 4128 8%8%28 3+1 -16+2+12+4=28 c)EC×)=§xP×tx) Ely)=§yPyly ) =4*IDH3*¥D =t*Is)+(z*Fsh(*¥D - . 12*758+32*224 d)j×=Fa)=EE4¥a jy ECYY =£ztYf+¥s=gI=D22*8*+42*124 = =¥s+¥s=7¥s=sD 7%8+189/28=196/28--7--21EC3=fa -4 # (1,) o :f #3) Given : Know : >x a . a., FiaTtIWrvarHEKtf0o0oxfxCHdxEtHfyH-fo5jgxyetdxioasezECx7foooxfxIddxVarlD-ECx4-E4D-f90ox2fxcxjdx-E2Wcneedthistirstcdy.l-Ek.ytElDEtDfxlDef9oofx.ylxiydy-folJdYEkytf0oof9ooxyfx.yCx.y1dxdy-tsTCxty1dy-t3CxYtEH2objEhpovarCH-t3l2xtFhyfycp-foxfyfdx-tsfloCxtyHx-tslEtyxHo-2zIt2zEH-foxtEtEsldx-JloxHkxtzDdx-tsftztyl-ItufhsSloxkxtzDdx-13floz@tzddxtHkfoyHetufDdy-st5oyktuDdy-tsKytKDfo.tk.D fx.yk.yt.ES#poeoeEEzfxhD=fFofxilKYYr=*=fxa=gjofxoET ao*e ttso2Ckty4dy-tzlKt7YDto-t3tst3D-t3k3j.tD-43.fIttsfttst3tssftsEHBvarGtEG4-E4xtf00oxzfxWdx.e2gjvarlYkECyY-E4yj-f.Yoy2fylyIdy-E2-EtyYfoy4tutttDdy-f2oHt3tyayEktfox45tHdx-fotEt25Ydx.gyotkty3jdy-t3CEthIlii5foCx3txDdx-5GtEHo-theIIeitoEl-tEtht2seaY-5.ktD-tsf3atH-3tetisteEvarlH-G-tHtEa-t2sTaFT.EvarcxFIs-Ed2-EEstHd6vCx.yHEkyhECxTEKD-5.CEXatjElxykfofoxylxtsIdxdya.sg.zgsg.qHEktYHEKHElD-Fttta-hEDtf2oyflox-yxdxdyeDVarktD-VarkItvarCptzavCxyj-Ezt3tt2tstD-tfoytEtFzIds-EztToa.aa-s@hsfoytst1DdyttzfoCfiEjdy-teEtEDi-tsCICat8D-tsaise.t , 'tneed to know how to that #6 was inthe do 3&4 ,and wrong SolutionSheet distance #4) Given : - Van choc Straw Short 0.2 0.2 0.2 oderf long 0.1 0.2 0.1 Find jointPMFPN ,p( nd) Drsaquibsaidwedon00.41+3004.3=6+40+90 ^ t op 0.2 0.1 Ⱦ 0.4 2- / - 0.2 02 0.2 Ⱦ 0.6 to do too 7 D ok ! ok bas , , D) = b)E( N Pvcn ) = 136 ^ f e) Are Dan independent 0.2 0.1 Ⱦ 0.4 If were,P(N=l)P(D=D should 0.2 o., they equal 2- P(N=DP(D=D - 0.2 oz Ⱦ , oz ,,Pw=D to do , = 00.18=10.2.3) too therefore Ntdaremtindepuobt ok o!q ¥ ppd - , P(D=l ) f)Cost=N*D Know : OR Elgcx ,yD=5§g(}y)p(x=X,y=y ) Usetechn .fm#2!make2matriasddopoint-wisemultipliationtaddthemup " 20100300 .it#o:::::s=OZ(Zo)+O.2(NO)+o.z( ( v zoo) 1 20 100 300 240200600=4+203+0.1400) -160+4+40+60=1880

Step 2 of 3

Step 3 of 3

##### ISBN: 9781118412930

The full step-by-step solution to problem: 7.55 from chapter: 7 was answered by , our top Engineering and Tech solution expert on 11/14/17, 08:39PM. The answer to “Water vapor enters a valve with a mass flow rate of 2 kg/s at a temperature of 3208C and a pressure of 60 bar and undergoes a throttling process to 40 bar. (a) Determine the flow exergy rates at the valve inlet and exit and the rate of exergy destruction, each in kW. (b) Evaluating exergy at 8.5 cents per kW ? h, determine the annual cost, in \$/year, associated with the exergy destruction, assuming 8400 hours of operation annually. Let T0 5 258C, p0 5 1 bar.” is broken down into a number of easy to follow steps, and 88 words. This full solution covers the following key subjects: exergy, bar, flow, rate, valve. This expansive textbook survival guide covers 14 chapters, and 1738 solutions. This textbook survival guide was created for the textbook: Fundamentals of Engineering Thermodynamics, edition: 8. Since the solution to 7.55 from 7 chapter was answered, more than 298 students have viewed the full step-by-step answer. Fundamentals of Engineering Thermodynamics was written by and is associated to the ISBN: 9781118412930.

#### Related chapters

Unlock Textbook Solution