For psychrometric applications such as those considered in

Chapter 13, Problem 13.112

(choose chapter or problem)

For psychrometric applications such as those considered in Chap. 12, the environment often can be modeled simply as an ideal gas mixture of water vapor and dry air at temperature \(T_{0}\) and pressure \(p_{0}\). The composition of the environment is defined by the dry air and water vapor mole fractions \(y_{\mathrm{a}}^{\mathrm{e}}, y_{\mathrm{v}}^{\mathrm{e}}), respectively.

(a) Show that relative to such an environment the total specific flow exergy of a moist air stream at temperature T and pressure p with dry air and water vapor mole fractions \(y_{a}\) and \(y_{v}\), respectively, can be expressed on a molar basis as

\(\begin{aligned} \overline{\mathrm{e}}_{\mathrm{f}}= & T_{0}\left\{( y _ { \mathrm { a } } \overline { c } _ { p \mathrm { a } } + y _ { \mathrm { v } } \overline { c } _ { p \mathrm { v } } ) \left[\left(\frac{T}{T_{0}}\right)\right.\right. \\ & \left.\left.-1-\ln \left(\frac{T}{T_{0}}\right)\right]+\bar{R} \ln \left(\frac{p}{p_{0}}\right)\right\} \\ & +\bar{R} T_{0}\left[y_{\mathrm{a}} \ln \left(\frac{y_{\mathrm{a}}}{y_{\mathrm{a}}^{\mathrm{e}}}\right)+y_{\mathrm{v}} \ln \left(\frac{y_{\mathrm{v}}}{y_{\mathrm{v}}^{\mathrm{e}}}\right)\right] \end{aligned}\)

where \(\bar{c}_{p \mathrm{a}} \text { and } \bar{c}_{p \mathrm{v}}\) denote the molar specific heats of dry air and water vapor, respectively. Neglect the effects of motion and gravity.

(b) Express the result of part (a) on a per unit mass of dry air basis as

\(\begin{aligned} \overline{\mathrm{e}}_{\mathrm{f}}= & T_{0}\left\{( y _ { \mathrm { a } } \overline { c } _ { p \mathrm { a } } + y _ { \mathrm { v } } \overline { c } _ { p \mathrm { v } } ) \left[\left(\frac{T}{T_{0}}\right)\right.\right. \\ & \left.\left.-1-\ln \left(\frac{T}{T_{0}}\right)\right]+\bar{R} \ln \left(\frac{p}{p_{0}}\right)\right\} \\ & +\bar{R} T_{0}\left[y_{\mathrm{a}} \ln \left(\frac{y_{\mathrm{a}}}{y_{\mathrm{a}}^{\mathrm{e}}}\right)+y_{\mathrm{v}} \ln \left(\frac{y_{\mathrm{v}}}{y_{\mathrm{v}}^{\mathrm{e}}}\right)\right] \end{aligned}\)

where \(R_{\mathrm{a}}=\bar{R} / M_{\mathrm{a}} \text { and } \widetilde{\omega}=\omega M_{\mathrm{a}} / M_{\mathrm{v}}=y_{\mathrm{v}} / y_{\mathrm{a}}\).

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back