In froth flotation, air is bubbled through an aqueous

Chapter 5, Problem 5.21

(choose chapter or problem)

In froth flotation, air is bubbled through an aqueous solution or slurry to which a foaming agent (soap) has been added. The air bubbles carry finely dispersed solids and hydrophobic materials such as grease and oil to the surface where they can be skimmed off in the foam. An ore-containing slurry is to be processed in a froth flotation tank at a rate of 300 tons/h. The slurry consists of 20.0 wt% solids (the ore, SG = 1.2) and the remainder an aqueous solution with a density close to that of water. Air is sparged (blown through a nozzle designed to produce small bubbles) into the slurry at a rate of 40.0 ft3 (STP)/1000 gal of slurry. The entry point of the air is 10 it below the slurry surface. The tank contents are at 75F and the barometric pressure is 28.3 in. Hg. The sparger design is such that the average bubble diameter on entry is 2.0 mm. (a) What is the volumetric flow rate of the air at its entering conditions? (b) By what percentage does the average bubble diameter change between the entry point and the slurry surface?

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back