×
Log in to StudySoup
Get Full Access to Elementary Principles Of Chemical Processes - 3 Edition - Chapter 8 - Problem 8.50
Join StudySoup for FREE
Get Full Access to Elementary Principles Of Chemical Processes - 3 Edition - Chapter 8 - Problem 8.50

Already have an account? Login here
×
Reset your password

A mixture of n-hexane vapor and air leaves a solvent

Elementary Principles of Chemical Processes | 3rd Edition | ISBN: 9780471687573 | Authors: Richard M Felder ISBN: 9780471687573 143

Solution for problem 8.50 Chapter 8

Elementary Principles of Chemical Processes | 3rd Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Elementary Principles of Chemical Processes | 3rd Edition | ISBN: 9780471687573 | Authors: Richard M Felder

Elementary Principles of Chemical Processes | 3rd Edition

4 5 1 279 Reviews
13
3
Problem 8.50

A mixture of n-hexane vapor and air leaves a solvent recovery unit and flows through a 70-cm diameter duct at a velocity of 3.00 mls. At a sampling point in the duct the temperature is 40C, the pressure is 850 mm Hg, and the dew point of the sampled gas is 25C. The gas is fed to a condenser in which it is cooled at constant pressure, condensing 60% of the hexane in the feed. (a) Perform a degree-of-freedom analysis to show that enough information is available to calculate the required condenser outlet temperature CC) and cooling rate (kW). (b) Perform the calculations. (c) If the feed duct diameter were 35 cm for the same molar flow rate of the feed gas, what would the gas velocity be?

Step-by-Step Solution:
Step 1 of 3

Spencer Kociba CHEM 101 Lecture 11/15/16 THERMOCHEMISTRY ● Enthalpy ○ Represented as ΔH ○ Internal energy + pressure*volume ■ We will mostly be concerned with constant pressure. This is where the formula ΔH = ΔE + PΔV comes from ○ ΔH = q (enthalpy=heat gained or lost in the system) ● Properties of Enthalpy (ΔH ) ○ ΔH is directly proportional to mass ○ ΔH for a reverse reaction is equal in magnitude (quantity) but opposite in sign for the forwards reaction ○ Hess’s Law: ΔH is independent of the number of steps involved ■ If Reaction(1) + Reaction(2)=Reaction(3), then ΔH =3ΔH + 1H 2 ● Endothermic reactions ○ Gains heat from sur

Step 2 of 3

Chapter 8, Problem 8.50 is Solved
Step 3 of 3

Textbook: Elementary Principles of Chemical Processes
Edition: 3
Author: Richard M Felder
ISBN: 9780471687573

Other solutions

People also purchased

Related chapters

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

A mixture of n-hexane vapor and air leaves a solvent