Solved: Open and closed boxes Consider the region R

Chapter 13, Problem 62

(choose chapter or problem)

Open and closed boxes Consider the region R bounded by three pairs of parallel planes: ax + by = 0, ax + by = 1, cx + dz = 0, cx + dz = 1, ey + fz = 0, and ey + fz = 1, where a, b, c, d, e, and f are real numbers. For the purposes of evaluating triple integrals, when do these six planes bound a finite region? Carry out the following steps. a. Find three vectors n1, n2, and n3 each of which is normal to one of the three pairs of planes. b. Show that the three normal vectors lie in a plane if their triple scalar product n1 # 1n2 * n32 is zero. c. Show that the three normal vectors lie in a plane if ade + bcf = 0. d. Assuming n1, n2, and n3 lie in a plane P, find a vector N that is normal to P. Explain why a line in the direction of N does not intersect any of the six planes and therefore the six planes do not form a bounded region. e. Consider the change of variables u = ax + by, v = cx + dz, w = ey + fz. Show that J1x, y, z2 = 01u, v, w2 01x, y, z2 = -ade - bcf. What is the value of the Jacobian if R is unbounded?

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back