Unless otherwise stated, in the following

Chapter 3, Problem 10E

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

Problem 10E

Problem

Unless otherwise stated, in the following problems we assume that the gravitational force is constant with g = 9.81 m/sec2 in the MKS system and g = 32 ft/sec2 in the U.S. Customary System.

An object of mass 2 kg is released from rest from a platform 30 m above the water and allowed to fall under the influence of gravity. After the object strikes the water, it begins to sink with gravity pulling down and a buoyancy force pushing up. Assume that the force of gravity is constant, no change in momentum occurs on impact with the water, the buoyancy force is 1/2 the weight (weight = mg), and the force due to air resistance or water resistance is proportional to the velocity, with proportionality constant b1 = 10 N-sec/m in the air and b2 = 100 N-sec/m in the water. Find the equation of motion of the object. What is the velocity of the object 1 min after it is released?

Questions & Answers

QUESTION:

Problem 10E

Problem

Unless otherwise stated, in the following problems we assume that the gravitational force is constant with g = 9.81 m/sec2 in the MKS system and g = 32 ft/sec2 in the U.S. Customary System.

An object of mass 2 kg is released from rest from a platform 30 m above the water and allowed to fall under the influence of gravity. After the object strikes the water, it begins to sink with gravity pulling down and a buoyancy force pushing up. Assume that the force of gravity is constant, no change in momentum occurs on impact with the water, the buoyancy force is 1/2 the weight (weight = mg), and the force due to air resistance or water resistance is proportional to the velocity, with proportionality constant b1 = 10 N-sec/m in the air and b2 = 100 N-sec/m in the water. Find the equation of motion of the object. What is the velocity of the object 1 min after it is released?

ANSWER:

Solution

Step 1

In this problem, we have to find the equation of motion of the object and then find the velocity of object after 1 min release.

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back