Apply Eqs. 11.59 and 11.60 to the rotating dipole of Prob.

Chapter 11, Problem 9P

(choose chapter or problem)

Problem 9P

Apply Eqs. 11.59 and 11.60 to the rotating dipole of Prob. 11.4. Explain any apparent discrepancies with your previous answer.

Reference equation 11.59

Reference equation 11.60

Reference Prob. 11.4.

A rotating electric dipole can be thought of as the superposition of two oscillating dipoles, one along the x axis and the other along the y axis (Fig. 11.7), with the latter out of phase by 90˚:

Using the principle of superposition and Eqs. 11.18 and 11.19 (perhaps in the form suggested by Prob. 11.2), find the fields of a rotating dipole. Also find the Poynting vector and the intensity of the radiation. Sketch the intensity profile as a function of the polar angle θ, and calculate the total power radiated. Does the answer seem reasonable? (Note that power, being quadratic in the fields, does not satisfy the superposition principle. In this instance, however, it seems to. How do you account for this?)

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back