Protons and neutrons (together called nucleons) are held

Chapter 10, Problem 10.92

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

Protons and neutrons (together called nucleons) are held together in the nucleus of an atom by a force called the strong force. At very small separations, the strong force between two nucleons is larger than the repulsive electrical force between two protonshence its name. But the strong force quickly weakens as the distance between the protons increases. A well-established model for the potential energy of two nucleons interacting via the strong force is U = U0 31 - e-x/x0 4 where x is the distance between the centers of the two nucleons, x0 is a constant having the value x0 = 2.0 * 10-15 m, and U0 = 6.0 * 10-11 J. Quantum effects are essential for a proper understanding of nucleons, but let us innocently consider two neutrons as if they were small, hard, electrically neutral spheres of mass 1.67 * 10-27 kg and diameter 1.0 * 10-15 m. Suppose you hold two neutrons 5.0 * 10-15 m apart, measured between their centers, then release them. What is the speed of each neutron as they crash together? Keep in mind that both neutrons are moving

Questions & Answers

QUESTION:

Protons and neutrons (together called nucleons) are held together in the nucleus of an atom by a force called the strong force. At very small separations, the strong force between two nucleons is larger than the repulsive electrical force between two protonshence its name. But the strong force quickly weakens as the distance between the protons increases. A well-established model for the potential energy of two nucleons interacting via the strong force is U = U0 31 - e-x/x0 4 where x is the distance between the centers of the two nucleons, x0 is a constant having the value x0 = 2.0 * 10-15 m, and U0 = 6.0 * 10-11 J. Quantum effects are essential for a proper understanding of nucleons, but let us innocently consider two neutrons as if they were small, hard, electrically neutral spheres of mass 1.67 * 10-27 kg and diameter 1.0 * 10-15 m. Suppose you hold two neutrons 5.0 * 10-15 m apart, measured between their centers, then release them. What is the speed of each neutron as they crash together? Keep in mind that both neutrons are moving

ANSWER:

Step 1 of 3

The total kinetic energy of both neutrons is given as,

                                                                     

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back