test algebraically to determine whether the equations graph is symmetric with respect to the x-axis, y-axis, or origin.
9/12: Quantifiers: 1. Universal: x ∈ D, P(x) a. For all x element of domain, such that P(x) i. P(x) is predicate 2. Existential: x ∈ D, Q(x) a. There exists an x element of domain, such that Q(x) i. Q(x) is quality 2 3. Ex. 1: x ∈ R, x ∈ R a. Closure of multiplication property b. P(x) = x ∈ R c. R is domain (All real numbers) 2 4. Ex. 2: If x > 1, then x > 1 a. Solution: Give the reader a key, and keep the “if-then” i. Let R = (0,1] = D ii. x ∈ D, x ∈ D 2 iii.