In the Millikan oil-drop experiment illustrated in Figure

Chapter , Problem 38

(choose chapter or problem)

In the Millikan oil-drop experiment illustrated in Figure 15.21, an atomizer (a sprayer with a fine nozzle) is used to introduce many tiny droplets of oil between two oppositely charged parallel metal plates. Some of the droplets pick up one or more excess electrons. The charge on the plates is adjusted so that the electric force on the excess electrons exactly balances the weight of the droplet. The idea is to look for a droplet that has the smallest electric force and assume it has only one excess electron. This strategy lets the observer measure the charge on the electron. Suppose we are using an electric field of 3 3 104 N/C. The charge on one electron is about 1.6 3 10219 C. Estimate the radius of an oil drop of density 858 kg/m3 for which its weight could be balanced by the electric force of this field on one electron. ( is courtesy of E. F. Redish. For more problems of this type, visit www.physics.umd .edu/perg/.)

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back