Consider two conducting spheres with radii R1 and R2

Chapter 26, Problem 40

(choose chapter or problem)

Consider two conducting spheres with radii R1 and R2 separated by a distance much greater than either radius. A total charge Q is shared between the spheres. We wish to show that when the electric potential energy of the system has a minimum value, the potential difference between the spheres is zero. The total charge Q is equal to q1 1 q2, where q1 represents the charge on the first sphere and q2 the charge on the second. Because the spheres are very far apart, you can assume the charge of each is uniformly distributed over its surface. (a) Show that the energy associated with a single conducting sphere of radius R and charge q surrounded by a vacuum is U 5 ke q 2/2R. (b) Find the total energy of the system of two spheres in terms of q1, the total charge Q , and the radii R1 and R2. (c) To minimize the energy, differentiate the result to part (b) with respect to q1 and set the derivative equal to zero. Solve for q1 in terms of Q and the radii. (d) From the result to part (c), find the charge q2. (e) Find the potential of each sphere. (f) What is the potential difference between the spheres?

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back