Consider the apparatus shown in Figure P31.58 in which a

Chapter 31, Problem 58

(choose chapter or problem)

Consider the apparatus shown in Figure P31.58 in which a conducting bar can be moved along two rails connected to a lightbulb. The whole system is immersed in a magnetic field of magnitude B 5 0.400 T perpendicular and into the page. The distance between the horizontal rails is , 5 0.800 m. The resistance of the lightbulb is R 5 48.0 V, assumed to be constant. The bar and rails have negligible resistance. The bar is moved toward the right by a constant force of magnitude F 5 0.600 N. We wish to find the maximum power delivered to the lightbulb. (a) Find an expression for the current in the lightbulb as a function of B, ,, R, and v, the speed of the bar. (b) When the maximum power is delivered to the lightbulb, what analysis model properly describes the moving bar? (c) Use the analysis model in part (b) to find a numerical value for the speed v of the bar when the maximum power is being delivered to the lightbulb. (d) Find the current in the lightbulb when maximum power is being delivered to it. (e) Using P 5 I 2R, what is the maximum power delivered to the lightbulb? (f) What is the maximum mechanical input power delivered to the bar by the force F ? (g) We have assumed the resistance of the lightbulb is constant. In reality, as the power delivered to the lightbulb increases, the filament temperature increases and the resistance increases. Does the speed found in part (c) change if the resistance increases and all other quantities are held constant? (h) If so, does the speed found in part (c) increase or decrease? If not, explain. (i) With the assumption that the resistance of the lightbulb increases as the current increases, does the power found in part (f) change? ( j) If so, is the power found in part (f) larger or smaller? If not, explain.

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back