Answer: A mass m on a spring with constant k satisfies the differential equation (see

Chapter 7, Problem 28

(choose chapter or problem)

A mass m on a spring with constant k satisfies the differential equation (see Section 3.7) mu + ku = 0, where u(t) is the displacement at time t of the mass from its equilibrium position. (a) Let x1 = u, x2 = u , and show that the resulting system is x = 0 1 k/m 0 x. (b) Find the eigenvalues of the matrix for the system in part (a). (c) Sketch several trajectories of the system. Choose one of your trajectories, and sketch the corresponding graphs of x1 versus t and of x2 versus t. Sketch both graphs on one set of axes. (d) What is the relation between the eigenvalues of the coefficient matrix and the natural frequency of the springmass system?

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back