An elementary magnetic suspension scheme is depicted in Fig. 5.61. For small motions

Chapter 5, Problem 5.29

(choose chapter or problem)

An elementary magnetic suspension scheme is depicted in Fig. 5.61. For small motions near the reference position, the voltage e on the photo detector is related to the ball displacement x (in meters) by e = 100x. The upward force (in newtons) on the ball caused by the current i (in amperes) may be approximated by f = 0.5i + 20x. The mass of the ball is 20 g and the gravitational force is 9.8 N/kg. The power amplifier is a voltage-tocurrent device with an output (in amperes) of i = u + V0 . (a) Write the equations of motion for this set-up. (b) Give the value of the bias V0 that results in the ball being in equilibrium at x = 0. (c) What is the transfer function from u to e? (d) Suppose that the control input u is given by u = Ke. Sketch the root locus of the closed-loop system as a function of K. Figure 5.62 Block diagram for rocket-positioning control system (e) Assume that a lead compensation is available in the form . Give values of K, Z, and p that yield improved performance over the one proposed in part (d).

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back